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Abstracts 

In recent years, real-world optimization problems have grown increasingly complex, challenging 

the effectiveness of  traditional deterministic approaches. This paper introduces the Status-based 

Optimization (SBO), an efficient algorithm inspired by human desire for status advancement. By 

emulating the process through which individuals seek proximity to and subsequently learn from or 

acquire resources from high-status figures, SBO translates these social patterns into a robust 

computational method for addressing challenging optimization tasks. Its strength is validated through 

comprehensive comparative analyses against various meta-heuristic algorithms—including those based 

on human behaviors, classical methods, and state-of-the-art techniques—across problem dimensions 

of  10, 30, 50, and 100 as defined by the IEEE CEC 2017 test suite. Moreover, SBO demonstrates 

superior performance in feature selection by identifying fewer but more relevant features compared to 

8 established binary optimizers in experiments involving 9 high-dimensional datasets. The algorithm's 

adaptability is further demonstrated in a multi-threshold image segmentation application at 3 threshold 

levels. SBO was benchmarked against 7 advanced meta-heuristic methods to segment 9 breast cancer 

histology images, successfully identifying optimal threshold values to enhance image clarity and 

segmentation accuracy. These promising results underscore the potential of  SBO for future research 

and practical applications in a wide array of  optimization scenarios. The SBO source code is available 

at https://aliasgharheidari.com/SBO.html for interested researchers. 
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1.  Introduction 

The growing complexity of  modern optimization problems demands far more than what traditional 

deterministic methods can deliver [1]. While these conventional approaches excel at solving simple, 

linear problems, they struggle—often terribly— when faced with the high-dimensional, dynamic, and 

often chaotic nature of  real-world challenges [2]. Such problems routinely involve vast search spaces, 

conflicting objectives, and relentlessly evolving constraints [3, 4]. This glaring gap has sparked a 

paradigm shift toward meta-heuristic algorithms (MAs)—adaptive, stochastic, and inherently resilient 

alternatives to rigid deterministic techniques [5, 6]. Unlike their predecessors, MAs thrive in uncertainty, 

consistently delivering near-optimal solutions where traditional methods falter. Today, their adoption is 

not just beneficial but crucial for tackling the daunting complexities of  global optimization.  

 

 
Fig. 1. Four types of  MAs. 

 

Given the critical role of  meta-heuristic algorithms (MAs) in solving modern optimization challenges, 

it is essential to explore their diverse forms—each leveraging unique, nature-inspired strategies to 

navigate complex problem landscapes. Yet, despite their adaptability and robustness, MAs share a 

pervasive limitation: their heavy dependence on intricate parameter tuning. This requirement hinders 

scalability and real-world deployment, where optimal configurations are rarely static. Whether 

Evolutionary Algorithms (EAs) mimicking natural selection, Swarm Intelligence (SI) models replicating 

collective behavior, or even physics- and human-inspired heuristics, all face this fundamental 

constraint—raising questions about their practicality in dynamic environments.  

 

Fig. 1 shows these four categories, each having distinct advantages and challenges, further showing the 

need for better optimization methods. As we look closer into this topic, we will focus on the impact of  

parameter tuning on the balance between exploration and exploitation within solution areas, aiming to 

improve the effectiveness of  MAs across a wide variety of  complex optimization scenarios. EAs play a 

key role within the range of  MAs, using the principles of  natural selection and survival of  the fittest. 

Starting with the Genetic Algorithm (GA) [7], which copies genetic inheritance and mutation processes, 

the field of  EAs has grown to include variations such as Genetic Programming (GP) [8], Evolutionary 

Strategies (ES) [9], and Differential Evolution (DE) [10]. EAs are known for their broad uses and ability 



 

to find global optima via an repeating selection process, crossover, and mutation [11]. Despite their 

strengths, EAs face a big problem: they are very sensitive to the tuning of  settings, namely the mutation 

rate and crossover probability. The need to carefully adjust these parameters to suit different 

optimization environments has led to research into creating adaptive and self-tuning evolutionary 

algorithms [12, 13]. This focus seeks to make easier parameter calibration while also improving the 

flexibility of  EAs in addressing a wide range of  optimization problems. 

 

SI algorithms use ideas from the collective and self-organizing behaviors observed among social 

organisms. Methods such as Particle Swarm Optimization (PSO) [14], Ant Colony Optimization (ACO) 

[15], and Grey Wolf  Optimization (GWO) [16] show these principles. PSO models the dynamic 

interaction seen in bird flocking. On the other hand, ACO copies the path-finding behavior of  ants, 

while GWO simulates the collaborative hunting tactics of  grey wolves. In the GWO method, each wolf  

within the virtual pack updates its position based on the influence of  the alpha, beta, and delta wolves, 

which stand for the first, second, and third best solutions obtained so far, respectively. Through repeated 

steps, the wolf  pack moves closer to a potential optimum, showing how well it works of  the GWO as 

an optimization technique [17]. Swarm intelligence algorithms operate on the principle that a population 

of  simple agents, following basic interaction rules, can together show complex and globally effective 

behaviors capable of  addressing complicated optimization problems [18]. By copying social behaviors, 

these algorithms efficiently explore the problem space through a basis in cooperation and information 

exchange among all search agents. Despite their built-in flexibility and robust parallel search capabilities, 

these algorithms face challenges related to parameter configuration. Key settings, including the number 

of  agents involved, the interaction rules, and the convergence criteria, play a key part in determining 

the algorithms' performance and convergence rates [19]. 

Physics/chemistry-inspired methods present an different way to optimization, using the processes 

and laws of  physics and chemistry. This category includes algorithms like Simulated Annealing (SA) 

[20] and Gravitational Search Algorithm (GSA) [21]. The former is influenced by metallurgical 

annealing, and the latter based on the principles of  gravity and mass interaction. Further, methods such 

as the Chemical Reaction Optimization (CRO) [22] simulate molecular interactions and energetic 

exchanges observed in chemical reactions. These algorithms are particularly commended for their ability 

to evade local optimum [23], achieved through emulating the adaptive and stochastic behaviors present 

in physical and chemical systems. Despite the innovative exploration strategies introduced by these 

algorithms, they continue to face challenges related to parameter selection [24], a key issue that 

influences the balance between exploration and exploitation, ultimately affecting their ability to identify 

good solutions. 

Algorithms based on human behavior demonstrate how incorporating cognitive processes and 

societal interactions into meta-heuristic optimization frameworks. For instance, algorithms like 

Teaching-Learning-Based Optimization (TLBO) [25] model the dynamics of  educational environments, 

the Cultural Algorithm (CA) [26] mirrors the evolution and transmission of  cultural knowledge, and 

Brain Storm Optimization (BSO) [27] simulates the collective problem-solving power of  brainstorming. 

These algorithms excel due to copying human-centric problem-solving tactics, which include learning 

from experience, utilizing memory, and the small effect of  social interaction [28]. However, the 

performance of  these algorithms relies heavily on how accurately they copy complex human behaviors. 

A key issue lies in the adjustment of  parameters governing individual learning and social dynamics, 

which can greatly affect the algorithms' skill in exploring the search spaces. 



 

In our effort to improve the meta-heuristic methods, we propose the Status-based Optimization 

(SBO), an efficient algorithm that models the details of  human status progression. The basis of  SBO 

is deeply based on the seemingly invisible yet strong networks of  social upward mobility, wherein 

individuals actively seek connections with and learn from their more skilled peers. The design of  SBO 

shows this natural tendency to aspire towards excellence and gain useful knowledge and resources for 

self-improvement [29]. 

Similarly, climbing social ladders can lead to personal growth and enrichment, the SBO algorithm 

copies this progression within the optimization field. It shows the exploration phase as an individual's 

effort to enter a higher-status circle, which, in algorithmic terms, is like searching the most promising 

areas of  the solution space. Following this, the exploitation phase is seen as the individual using the 

opportunities and connections gained within this advanced circle, like refining the best solutions for 

optimal performance. Therefore, the SBO algorithm makes a direct comparison between the 

continuous human effort to improve through engagement aimed at status enhancement and the 

systematic optimization method. It does this through its great flexibility and carefully designed 

framework. The main findings of  this paper can be summed up as follows: 

1. The introduction of  the SBO, a new MA that copies human status-seeking behaviors and 

interactions, provides a new way to heuristic optimization. 

 

2. Showing strong ability in global optimization, the performance of  the SBO algorithm is 

validated through thorough tests using the IEEE CEC 2017 test suite. 

 

3. The reliability of  the SBO algorithm's performance is validated through detailed stats tests, 

including the Wilcoxon signed-rank test and the Friedman test. These tests confirm the 

statistical significance and reliability of  its optimization results. 

 

1. The usefulness and effectiveness of  the SBO algorithm are further demonstrated in high-

dimensional feature selection and multi-threshold image segmentation tasks. These results 

provide evidence of  its potential flexibility and indicate its usefulness across various 

engineering domains. 

 

The structure of  this paper is as follows: Section 2 reviews human behavior-inspired meta-heuristic 

algorithms, setting the base for the detailed look of  the SBO in Section 3, which studies its conceptual 

basis and underlying mathematical model. Section 4 fully tests the SBO's performance against 

established benchmarks, while Section 5 demonstrates its use to real-world feature selection and multi-

threshold image segmentation tasks. Finally, Section 6 summarizes main results and discusses potential 

future research directions. 

2. Literature Review 

Optimization algorithms are divided into two main types: heuristic and meta-heuristic methods. 

Heuristic algorithms are specialized approaches that use pre-set rules or expert knowledge to find good-

enough solutions quickly, though they cannot promise the best possible answer. They're custom-built 

for specific problems, like greedy algorithms and local search methods. 



 

On the other hand, MAs are flexible problem-solvers that manage the search process to balance 

wide-ranging exploration and focused improvement. Unlike heuristics, meta-heuristics can tackle many 

different problems without major changes. They often use random elements and self-adjusting methods 

to escape local optima, making them better for tough, high-dimensional problems. It's worth noting 

that many meta-heuristic algorithms include heuristics as part of  their solution-improving process, 

showing how the two types connect. 

Our research places the new SBO algorithm in the meta-heuristic category, as it uses adaptive learning 

inspired by how people seek higher social status to improve search efficiency. Different from traditional 

heuristic methods that follow fixed rules, SBO changes its search strategy on the fly by sharing 

information and evaluating resources, boosting both exploration and exploitation. Because human 

behavior-inspired algorithms have made such an impact in research, we focus our review on key 

examples in this field. Particularly, TLBO, BSO, Political Optimization (PO), and Human Mental Search 

(HMS) stand out as strong examples of  human-like problem-solving. Studying these not only helps 

position SBO within existing research but also shows how human-inspired strategies have developed in 

optimization field. 

The TLBO [30] algorithm is one of  the most classical human-inspired meta-heuristics, simulating 

a classroom's teaching–learning process without requiring algorithm-specific parameters. Its simplicity 

has led to various adaptations: for instance, the Multi-Objective TLBO (MOTLBO) [31] optimizes 

structural design by efficiently navigating trade-offs between weight and material strength, and the 

Improved TLBO (ITLBO) [32] has been successfully applied to electrical distribution systems. Further, 

the Self-adaptive Hybrid Self-learning based TLBO (SHSLTLBO) [33] enhances the basic algorithm by 

introducing adaptive learning strategies to focus the search on promising regions. 

The Brain Storm Optimization (BSO) algorithm [34] mimics human brainstorming, generating 

diverse solutions through iterative idea exchange. Enhancements such as the Optima-Identified 

Framework amalgamated with BSO (OIF-BSO) [35] improve search direction via an optima-

identification mechanism, while the Advanced Grid-based BSO (AGBSO) [36] employs alternative 

search patterns and grid-based operators to navigate uncertain landscapes better. 

The Political Optimization (PO) [37] draws from the complexities of  human political systems, 

using a multi-agent framework where competitive and cooperative interactions drive the search for 

optimal solutions. Its effectiveness is further improved in variants like the Improved PO (IPO) [38], 

which adds sophisticated political strategies to boost performances, and the Quantum Nelder-Mead PO 

(QNMPO) [39], which hybridizes quantum principles with political optimization to enhance 

performance in energy systems. 

The Human Mental Search (HMS) algorithm [40] captures cognitive and decision-making 

processes inherent to human problem solving. The Global-Best Guided HMS with Random Clustering 

Strategy (GBG-HMS-RCS) [41] integrates global-best guidance with stochastic clustering to emulate 

human attention and awareness. Further, the Multi-Cluster Selection HMS (MCS-HMS) [42] forms 

multiple cognitive clusters to identify promising solution regions, a strategy that proves effective in 

complex scenarios such as supply chain management and transport logistics. 

To summarize, this section has carefully examined an array of  important algorithms inspired 

by different aspects of  human behavior. The teaching-learning dynamics shown in TLBO, the team-

based creativity in BSO, the political strategies in PO, and the thought processes in HMS all turn human 

behavior into computational tools. While these human-inspired algorithms have worked well for 

complex problems, they also have some weaknesses: 



 

• TLBO does not need parameters but can be slow to converge 

• BSO uses creative search methods but may converge too early 

• PO can require heavy computation 

• HMS often needs careful adjustment for best results 

Compared to these, the new SBO algorithm offers key improvements: 

1. Fewer settings to adjust, making it easier to use 

2. Better balance between wide searching and local refining, thanks to its social learning 

approach 

3. Faster runtimes, as shown in our tests (Section 4.4), where it consistently beat other methods 

These benefits make SBO more useful for real-world and complex optimization problems. 

We developed SBO to combine the best features of  these human-inspired approaches while 

overcoming their limitations. In the coming sections, we'll explain: What inspired SBO, how it works 

mathematically, and where it can be applied. This will show how SBO fits with other meta-heuristic 

methods and solves the problems found in current approaches. 

3. Proposed Status-based Optimization 

This section focuses on the SBO algorithm's exposition, detailing its mathematical modeling and 

computational complexity. 

3.1 SBO Inspiration 

The SBO algorithm models humanity’s essential drive to climb social ladders—a behavior rooted in our 

need for self-improvement [43]. This ambition mirrors optimization’s core goal: iterative refinement. 

Like people gaining advantages by connecting with successful peers  [44], SBO agents learn from high-

performing solutions to enhance search efficiency. 

Research in cognitive science and behavioral economics confirms that learning from high-status 

individuals improves problem-solving in complex scenarios. SBO translates this into computational 

terms, creating a collective intelligence where: 

• Agents share knowledge (like human networks) 

• Diverse strategies emerge naturally 

• The system balances exploration and exploitation 

 

In short, we can say this is how SBO works:  

1. Elite Engagement (Exploration) 

o Agents follow top performers to discover promising regions 

o Analogous to seeking mentors in social hierarchies 

2. Resource Phases (Exploitation) 

o Acquisition: Gather information from elites 

o Evaluation: Refine solutions like professionals improving skills 

 



 

Several optimization algorithms inspired by human status-driven social behaviors and educational 

interactions have successfully solved complex problems. The Human Behavior-Based Optimization 

(HBBO) algorithm [45] mimics collective human behaviors such as cooperation, competition, imitation, 

and social learning. HBBO balances social learning with individual creativity through mechanisms like 

imitation, innovation, and collaboration, making it suitable for dynamic or multi-objective problems. 

Similarly, the Educational Competition Optimizer (ECO) [46] models competitive learning 

environments where solutions compete and learn from top performers, guided by the best solution, 

akin to a teacher. This approach promotes rapid convergence and adaptability to constrained 

optimization scenarios, showcasing its efficiency in applications like academic performance modeling 

and game theory. 

 

By formalizing status-seeking behaviors, SBO outperforms predecessors in: 

• Balancing global/local search 

• Reducing manual parameter tuning 

• Scaling to high-dimensional problems 

3.2 Mathematical Modeling of  SBO 

Drawing inspiration from human status-seeking behavior, the SBO algorithm frames optimization 

as both a personal and social development process. It begins by generating two diverse populations of  

agents—representing individuals from different social backgrounds—who then evolve through a 

process modeled after seeking mentorship from society’s elite. 

Key Phases are as follows: 

1. Elite Pursuit: Agents identify and move toward high-performing solutions (“mentors”) 

2. Resource Acquisition: They gain valuable information (social capital) 

3. Strategic Integration: Agents critically evaluate and adopt only the most beneficial 

improvements 

This mirrors how people: 

• Advance socially by learning from successful peers 

• Selectively adopt behaviors that enhance their status 

• Systematically climb hierarchies through accumulated advantages 

The algorithm culminates by consolidating these improvements to deliver an optimal solution—

mathematically representing the pinnacle of  status achievement. (Full mathematical details follow in 

later sections.) 

3.2.1 Initialization 

The Initialization phase lays the foundation of  the SBO algorithm by generating two populations, 

𝑋1  and 𝑋2 . In this model, each index 𝑖  corresponds to a unique family, where the same-indexed 

individuals across 𝑋1  and 𝑋2  represent family members with distinct knowledge levels and social 

standings. This dual-population design ensures that each family is represented by at least two individuals, 

thereby capturing intra-family diversity and enabling dynamic updating of  the elite member as the 

algorithm iterates. 



 

 

𝑋1, 𝑋2 =
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𝑁×𝐷

 (1) 

 

Each individual's state is defined by Eq. (2): 

 𝑥𝑖,𝑗 = 𝑈(𝑙𝑏𝑗 , 𝑢𝑏𝑗) (2) 

where 𝑥𝑖,𝑗 is the 𝑗𝑡ℎ decision variable of  the 𝑖𝑡ℎ individual, 𝐷 is the number of  decision variables, and 

𝑙𝑏𝑗 and 𝑢𝑏𝑗 are the lower and upper bounds, respectively. This uniform initialization across the 𝑁 × 𝐷 

matrices for both populations establish the problem's dimensional nature and ensures a diverse starting 

point. 

After initialization, a selection process identifies the elite member for each family to form the elite 

population 𝑋𝑒. Specifically, for the 𝑖𝑡ℎ family, 

 
𝑥𝑖

𝑒 = {
𝑥𝑖

1                    𝑖𝑓 𝑓𝑜𝑏𝑗(𝑥𝑖
1) < 𝑓𝑜𝑏𝑗(𝑥𝑖

2)                   

𝑥𝑖
2                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

 (3) 

where 𝑓𝑜𝑏𝑗(⋅) is the objective function. 

This dual-population approach does more than just find top performers in each group—it mirrors 

real-world social mobility, where progress depends on both individual merit and strategic connections. 

The interactions between regular individuals 𝑥𝑖  and their elite counterparts 𝑥𝑖
𝑒  simulate real-world 

status-oriented social networks, illustrating how elite figures facilitate progress and resource sharing 

within and across family units. 

3.2.2 Elite Engagement 

In the Elite Engagement phase, the SBO algorithm replicates the complex dynamics of  human 

social status structures to enhance the search for optimal solutions. This phase reflects the process of  

individuals seeking guidance from high-status mentors—represented in the algorithm as elite agents—

to accelerate their growth. Unlike isolated family frameworks, this progression extends beyond self-

contained groups by establishing interconnections between different social units, creating a more 

adaptive and robust search mechanism. 

To emulate this behavior, the SBO algorithm selects an individual from the 𝑋𝑒 population—a 

subset representing the most successful members across different families—using the Roulette Wheel 

selection method [47]. This probabilistic selection process ensures that individuals do not solely rely on 

a single dominant peer but instead consider multiple influential agents, reflecting the unpredictable yet 

strategic nature of  human networking. 

The selected individual, denoted as 𝑥𝑟
𝑒, and the best individual in the population, 𝑥𝑏, together 

define a high-status circle—a metaphorical yet computationally significant region within the solution 

space that agents aim to integrate into. This dynamic representation of  social mobility ensures that 

individuals systematically transition towards more promising areas of  the search space. 

To mathematically articulate this behavior, Eq. (4)  and Fig. 2 delineate the generation of  

individuals 𝑥𝑖 within the high-status circle—defining the area of  promise within the solution space. 

This high-status circle represents an adaptive region where individuals navigate toward better solutions, 

balancing both structured progression and exploratory randomness. The movement of  an individual is 

governed by: 



 

 
𝑥𝑖′ = {

(1 − 𝑤1 − 𝑤2) × 𝑥𝑖 + 𝑤1 × 𝑥𝑟
𝑒 + 𝑤2 × 𝑥𝑏 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑤3

𝑤4 × ((1 − 𝑤1 − 𝑤2) × 𝑥𝑖 + 𝑤1 × 𝑥𝑟
𝑒 + 𝑤2 × 𝑥𝑏) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

where 𝑥𝑖 represents the 𝑖𝑡ℎ individual in the population, 𝑥𝑖′ denotes the next iteration, 𝑥𝑟
𝑒 is an elite 

individual selected via the Roulette Wheel method from the 𝑋𝐸 population, and 𝑥𝑏 is the best solution 

found so far. The movement strategy in Eq. (4) ensures that individuals are influenced by their own 

position, a high-performing peer, and the best-known solution. 

The parameters 𝑤1  and 𝑤2  are generated using 𝑟𝑎𝑛𝑑𝑛 , providing normally distributed 

randomness to weight the contributions of  𝑥𝑖, 𝑥𝑟
𝑒, and 𝑥𝑏. These values introduce stochasticity while 

ensuring the movement remains within a logical bound, fostering a controlled yet diverse search across 

the solution space. 

In contrast, 𝑤3 and 𝑤4 are designed parameters that dynamically adjust the influence of  the high-

status circle on exploration and exploitation. 𝑤3 is calculated as: 

 

𝑤3 = tanh((
√|𝑀𝑎𝑥𝐹𝐸𝑠 − 𝑟𝑎𝑛𝑑𝑛 × 𝐹𝐸𝑠|

𝑖
)

𝐹𝐸𝑠
𝑀𝑎𝑥𝐹𝐸𝑠

)  (5) 

where 𝑀𝑎𝑥𝐹𝐸𝑠 denotes the maximum number of  function evaluations, 𝐹𝐸𝑠 is the current number of  

evaluations, and 𝑖 is the index of  the individual. This formulation allows 𝑤3 to adapt as optimization 

progresses, determining whether the standard update rule or a more randomized search should be 

applied. 

If  𝑟𝑎𝑛𝑑 ≥ 𝑤3, the second formulation in Eq. (4) is used, where 𝑤4 serves as a scaling factor that 

generates a uniformly distributed random number between [−𝑤3, 𝑤3] . This mechanism increases 

exploration diversity by enabling step-size adjustments, particularly when escaping local optima. 

 𝑤4 = 𝑢𝑛𝑖𝑓𝑟𝑛𝑑(−𝑤3, 𝑤3) (6) 

 

 
Fig. 2. Elite Engagement phase of  SBO. 

 

By integrating these components, the SBO algorithm mirrors real-world decision-making—where 

individuals pursue successful peers while strategically exploring unconventional paths to optimize 

outcomes. The initial formulation in Eq. (4) strategically calculates an optimal position within the high-



 

status circle, paralleling how individuals gain access to influential networks for better prospects. 

Through evolutionary computation, solutions progressively improve, moving toward more promising 

regions of  the search space. 

In contrast, the second formulation introduces a randomized scaling factor ranging from 

[−𝑤3, 𝑤3], allowing the algorithm to explore beyond the immediate promising area. This feature 

prevents premature convergence while enabling SBO to discover potentially superior solutions in 

unexplored areas. This balance reflects human decision-making, where people sometimes diverge from 

established paths—whether through career changes or innovative ventures—to find opportunities 

missed by conventional approaches. 

By combining structured learning and exploratory flexibility, SBO achieves an optimal balance 

between exploitation and exploration. This allows the algorithm to adapt effectively to complex 

optimization landscapes. The resulting approach improves solution quality while maintaining robustness 

across diverse problems, proving SBO’s capability for high-performance optimization. 

3.2.3 Resource Acquisition 

The Resource Acquisition phase is crucial in transitioning from exploration to exploitation by 

acquiring and utilizing valuable insights—like social capital in human networks. In this phase, a 𝑓𝑙𝑎𝑔 

vector is created for all individuals in the 𝑋 population, initially set to 1 to indicate tentative status-

related success. This flag later updates during the Resource Evaluation phase, serving as a dynamic 

indicator of  each individual’s efficacy in status improvement. 

The resource acquisition mechanism varies based on status-related success. For socially successful 

individuals, resources are acquired selectively by averaging inputs from two sources: one from the elite 

individual within the same family unit and another from the overall best individual in the population. 

This process, captured by 

 
𝑥𝑖,𝑗1

𝑠 =
𝑥𝑖,𝑗2

𝑒 + 𝑥𝑏,𝑗3

2
 (7) 

with 𝑗𝑖𝑑𝑥 = 𝑟𝑎𝑛𝑑𝑖(𝐷) for 𝑖𝑑𝑥 = 1,2,3, reflects the blend of  familial and external elite influences. 

Conversely, socially unsuccessful individuals rely solely on familial resources. Their resource update 

follows 

 𝑥𝑖,𝑗
𝑠 = 𝑥𝑖,𝑗

𝑒 𝑖𝑓 𝑚𝑗 = 1 (8) 

where the row vector 𝑚 is initially zero and updated prior to social interactions by 

 𝑚(𝑢(1: 𝑐𝑒𝑖𝑙(𝑟𝑎𝑛𝑑 × 𝐷))) = 1 (9) 

where 𝑢 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝐷) providing a random permutation of  decision variable indices. 

As shown in Fig. 3, this phase directs the population toward promising regions of  the solution 

space to maximize exploitation. 

• Fig. 3(a): Successful individuals refine their positions by using resources from higher-status 

agents 

• Fig. 3(b): Struggling individuals reposition themselves through resource acquisition 

 

The algorithm replicates status-driven social dynamics—where resource-rich individuals naturally 

attract more opportunities—to systematically guide the population toward better solutions. 

This significantly boosts exploitation while improving overall optimization performance. 

 



 

 

 
Fig. 3. Resource Acquisition phase of  SBO. 

 

3.2.4 Resource Evaluation 

During the Resource Evaluation phase, the algorithm assesses whether acquired resources enhance 

an individual's fitness. Using the flag vector established earlier, it tracks progress: 

• 1 = Fitness improvement (success) 

• 0 = No improvement (failure) 

 

In practice, if  the objective function value of  the updated individual 𝑥𝑖
𝑠 is better than that of  the 

original 𝑥𝑖, the new state is retained: 

 𝑥𝑖 = 𝑥𝑖
𝑠 𝑖𝑓 𝑓𝑜𝑏𝑗(𝑥𝑖

𝑠) < 𝑓𝑜𝑏𝑗(𝑥𝑖) (10) 

Simultaneously, the flag vector is refreshed as follows: 

 
𝑓𝑙𝑎𝑔𝑖 = {

1 𝑖𝑓 𝑓𝑜𝑏𝑗(𝑥𝑖
𝑠) < 𝑓𝑜𝑏𝑗(𝑥𝑖)

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

Individuals showing no improvement maintain their current positions, while successful ones 

relocate to superior locations. This selective process mirrors real-world social advancement, where only 

valuable resources—those demonstrably improving an agent's status—are retained. This refinement 

progressively steers the search toward optimal solutions. 

3.2.5 Consolidation 

The Consolidation phase activates when termination criteria are met—either after reaching maximum 

function evaluations or achieving a sufficiently optimized solution (verified by enhancement metrics. 

Prior to this, the algorithm repeatedly cycles through its core phases: 

• Elite Engagement 

• Resource Acquisition 

• Resource Evaluation 



 

 

Each phase simulates status-driven interactions to progressively improve solutions. 

Implementation Details: 

• Algorithm 1 provides pseudo-code 

• Fig. 4 shows the workflow 

 

During Consolidation, the algorithm:  

• Compiles and assesses results against objectives 

• Produces a final solution embodying status-based heuristics 

• Ensures efficient resource use and detailed documentation for analysis/application 

 

Algorithm 1 Pseudo-code for the Status-based Optimization 

Input 𝑁,  𝐷,  𝑀𝑎𝑥𝐹𝐸𝑠,  𝑙𝑏, 𝑢𝑏, 𝑓𝑜𝑏𝑗; 
Initialization: 

    Initialize X,  𝑋𝑒 , 𝐹𝑖𝑡, 𝐹𝑖𝑡𝑒 , 𝑓𝑙𝑎𝑔; 

    Calculate 𝐹𝑖𝑡 and 𝐹𝑖𝑡𝑒; 

    Update 𝑋𝑒 and 𝑥𝑏; 

While 𝐹𝐸𝑠  <  𝑀𝑎𝑥𝐹𝐸𝑠 

    Select 𝑥𝑟
𝑒 from 𝑋𝑒 by Rolette Wheel; 

    Elite Engagement: 

        Update 𝑤1, 𝑤2, 𝑤3, 𝑎𝑛𝑑 𝑤4; 

        Update 𝑋 by Eq. (4); 
        Apply Boundary control to 𝑋; 

        Initialize 𝑋𝑠 as 𝑋; 
    Resource Acquisition: 

        Initialize row vector 𝑚 as 0; 

        Update 𝑚 by Eq. (9); 

        For each 𝑥𝑠 in 𝑋𝑠: 

            If 𝑥𝑠 is successful: 

                Update 𝑥𝑠 by Eq. (7); 
            Else: 

                Update 𝑥𝑠 by Eq. (8); 
        End For 
    Resource Evaluation: 

        Update 𝑋 by Eq. (10); 
        Update 𝑓𝑙𝑎𝑔 by Eq. (11); 
    Consolidation: 

        Update 𝑋𝑒 and 𝑥𝑏; 

        Increment 𝐹𝐸𝑠 = 𝐹𝐸𝑠 + 2𝑁; 
End While 

Return 𝑥𝑏. 

 



 

 
Fig. 4. Flowchart of  SBO. 

 

3.3 Computational Complexity Analysis of  SBO 

The computational complexity of  the SBO algorithm is primarily determined by the population 

size (𝑁), the problem dimension (𝐷), and the maximum number of  iterations (𝑇), which collectively 

define its termination criterion. In this analysis, we focus on the algorithm's most computationally 

demanding operations while omitting less impactful vector updates. The Initialization phase, involving 

the generation of  two populations of  size 𝑁 × 𝐷, requires 𝑂(2𝑁𝐷) time. The Elite Engagement phase 

updates the solution in 𝑂(𝑁𝐷) per iteration, culminating in a total complexity of  𝑂(𝑇𝑁𝐷) over 𝑇 

iterations. Both the Resource Acquisition and Resource Evaluation phases operate in 𝑂(𝑁) time per 

iteration, contributing 𝑂(𝑇𝑁) cumulatively, while the Consolidation phase, which entails sorting, adds 

𝑂(𝑇𝑁𝑙𝑜𝑔𝑁) to the overall cost. Summing these contributions, the total computational complexity of  

SBO is expressed as 𝑂(𝑇𝑁𝐷 + 𝑇𝑁 + 𝑇𝑁𝑙𝑜𝑔𝑁), a formulation that encapsulates the sequential and 

interdependent nature of  its core operations. This analysis provides a concise quantitative estimate of  

the algorithm's efficiency and scalability in addressing a range of  optimization challenges. 

4. Performance Evaluation of  SBO 

The sections below furnish an in-depth quality evaluation of  the proposed SBO algorithm through 

a benchmark comparison involving 13 state-of-the-art algorithms and the 29 functions outlined by 

IEEE CEC 2017 [48]. These benchmark functions were carefully selected for their diversity and 

comprehensiveness—they include unimodal, multimodal, hybrid, and composition functions that 

collectively encapsulate a wide range of  optimization challenges encountered in real-world problems. 

This rigorous benchmark suite, widely recognized and utilized in the optimization community, offers a 

robust framework for assessing the unique features of  SBO, such as the balance and diversity in its 

search dynamics and the patterns of  agent trajectories observed through detailed examination. 

Performance metrics for this comparison are based on 30 independent runs per function, with 

average fitness values (Avg) and standard deviations (Std) serving as the primary indicators of  



 

algorithmic competence. All experiments were conducted in a controlled environment to ensure 

fairness and reproducibility.  

Specifically, all algorithms were evaluated on a Windows Server 2016 platform equipped with an 

Intel® Xeon® Silver 4210R CPU and 128 GB of  RAM, using a population size of  30 and a maximum 

of  300,000 objective evaluations per run. The MATLAB R2018a ecosystem provided a reliable and 

standardized computational backbone for this extensive comparative study. 

4.1 Quality Analysis of  SBO 

This section evaluates SBO's ability to balance exploration and exploitation—key aspects for an 

effective metaheuristic. We assess its capacity to shift from a broad global search to a focused local 

refinement while managing population diversity, as revealed by the historical distribution and trajectories 

of  its search agents. This analysis highlights the interplay between diversification and convergence, 

offering insights into SBO’s efficiency in navigating complex solution landscapes. 

To quantify this balance, we use metrics that measure exploration (the search for new areas, which 

increases diversity) and exploitation (refining known good solutions, which decreases diversity). A 

practical algorithm typically exhibits strong early exploration, followed by intensified exploitation. We 

employ a dimension-wise diversity measure [49]: 

 

𝐷𝑖𝑣 =
1

𝐷
∑𝐷𝑖𝑣𝑗

𝐷

𝑗=1

 (12) 

 

𝐷𝑖𝑣𝑗 =
1

𝑁
∑|𝑋𝑖

𝑗
− 𝑚𝑒𝑎𝑛(𝑋𝑗)|

𝑁

𝑖=1

 (13) 

 

𝑚𝑒𝑎𝑛(𝑋𝑗) =
1

𝑁
∑𝑋𝑖

𝑗

𝑁

𝑖=1

 (14) 

where, 𝐷𝑖𝑣𝑗  is the diversity in the 𝑗𝑡ℎ dimension, 𝐷  is the problem dimension, and 𝑋𝑖
𝑗
 is the 𝑗𝑡ℎ 

coordinate of  the 𝑖𝑡ℎ solution. Based on this, we define the exploration and exploitation rates as follows: 

 
𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 =

𝐷𝑖𝑣(𝑡)

𝐷𝑖𝑣𝑚𝑎𝑥
× 100% (15) 

 
𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 =

|𝐷𝑖𝑣(𝑡) − 𝐷𝑖𝑣𝑚𝑎𝑥|

𝐷𝑖𝑣𝑚𝑎𝑥
× 100% (16) 

where 𝐷𝑖𝑣(𝑡) is the diversity at iteration 𝑡 and 𝐷𝑖𝑣𝑚𝑎𝑥 is the maximum diversity observed. 

For our experiments, we set the population size 𝑁 = 30, problem dimension 𝐷 = 30, and allow 

up to 300,000 evaluations. Fig. 5 displays the exploration rate, exploitation rate, population diversity, 

and convergence curves for eight functions from the IEEE CEC 2017 suite. 

The functions selected for analysis span all four categories of  the IEEE CEC 2017 suite. 

Specifically, we consider the unimodal function F1, multimodal functions F3 and F9, hybrid functions 

F11, F13, F16, and F19, and the composition function F26. Their three-dimensional distributions are 

illustrated in Fig. 5(a). Unimodal functions, with a single global optimum, primarily test an algorithm’s 

convergence and exploratory efficiency. In contrast, multimodal functions assess the ability to escape 

local optima, while hybrid and composition functions—formed through combinations, rotations, and 

shifts—challenge the algorithm to balance exploration and exploitation effectively. 



 

Fig. 5(b) demonstrates that SBO exhibits high exploration in the early iterations, transitioning to 

dominant exploitation in later stages. The incremental–decremental trend in the balance curve reflects 

this shift: an initial rise indicates vigorous global exploration, whereas the subsequent decline points to 

focused local exploitation. For example, with F1, the exploitation rate reaches 93.9%, highlighting SBO’s 

proficiency in refining toward the optimal solution. 

Further, Fig. 5(b) and Fig. 5(c) reveal that SBO’s population diversity steadily decreases before 

stabilizing, signifying ongoing improvements in solution quality. Multimodal functions F3 and F9 

exhibit a similar pattern to F1, albeit with a slightly higher exploration rate due to their complexity. In 

the case of  hybrid functions, a noticeable increase in the exploration rate—peaking at 23.3% for F13—

coupled with marked fluctuations in diversity results in slower convergence compared to unimodal and 

multimodal cases. Nevertheless, the convergence curves in Fig. 5(d) confirm that SBO effectively avoids 

local optima by progressively refining solutions. For the composition function F26, an exploration rate 

of  12.7% and a gradual decline in diversity underscore SBO’s adept balance between global exploration 

and local exploitation, characterized by an initial surge in exploratory activity followed by a focused 

refinement phase. 



 

 
Fig. 5. (a) 3D plots of  functions, (b) balance analysis of  SBO, (c) diversity analysis of  SBO, (d) 

convergence curves of  SBO. 

 



 

To investigate the SBO algorithm, we employed four evaluative metrics over 200 iterations with a 

constant population size of  30. These metrics enable a comprehensive qualitative assessment of  the 

algorithm’s behavior and effectiveness. In particular, the search history of  the agents was recorded from 

the first to the last iteration, providing insights into the algorithm’s explorative and exploitative 

movements throughout the search space. In addition, the trajectory of  the best search agent, as indicated 

by variations in the first-dimensional variable over successive generations, was analyzed to illustrate the 

progression from initial exploration to subsequent exploitation. The average fitness of  the search agents 

was computed over the entire evolutionary process to capture the algorithm’s overall improvement. In 

contrast, the convergence curve, defined by the best fitness value attained by the population over time, 

offered a visual representation of  the refinement process leading to the optimal solution. 

These metrics were applied to eight functions selected from a set of  23 classical benchmark 

functions, with their three-dimensional representations depicted in Fig. 6(a). Fig. 6(b) presents the 

search history of  the SBO algorithm’s agents, where the optimal solutions are marked by red dots and 

the individual agents by black dots. The widespread dispersion of  agents throughout the search space, 

coupled with a noticeable clustering near the optimum, underscores the algorithm’s robust exploration 

capabilities and its effective local exploitation. This duality in behavior is attributed to distinct strategic 

phases inherent in SBO, wherein the exploration is predominantly reinforced during the Elite 

Engagement phase, and the exploitation is boosted through resource allocation among the most 

promising individuals. 

Further analysis is provided by Fig. 6(c), which charts the trajectory of  the best search agent’s 

first-dimensional variable. The initial iterations exhibit significant fluctuations that eventually stabilize, 

reflecting the algorithm’s transition from a phase of  vigorous exploration to one of  focused exploitation. 

Similarly, Fig. 6(d) illustrates that the average fitness of  the agents begins at a higher level and either 

stabilizes or fluctuates within a narrow range as the process progresses, indicating a gradual convergence 

toward optimality. 



 

 
Fig. 6. (a) 3D plots of  functions (b) search history, (c) trajectory of  agent, (d) average fitness of  all 

agents. 

 

The comprehensive performance analysis of  the SBO algorithm offers significant insights into its 

functioning, with particular attention to how candidate solutions evolve and improve throughout the 



 

optimization process. This analysis demonstrates the efficacy of  SBO's unique strategic phases—Elite 

Engagement and Resource Acquisition—which are based on human status-seeking behaviors. By 

replicating the human pursuit of  upward social mobility, the algorithm drives extensive exploration of  

the search space, reflecting the natural drive to advance through connections with accomplished 

individuals. At the same time, the strategic exchange of  information and resources among elite agents 

enables focused exploitation, improving candidate solutions. This effective integration of  exploration 

and exploitation, rooted in status-driven social dynamics, gives SBO strong capabilities for solving 

complex optimization challenges. 

4.2 Benchmark Comparison of  SBO 

The IEEE CEC 2017 benchmark suite's 29 functions were used to thoroughly evaluate the 

proposed SBO algorithm's performance across different dimensions and function types. Testing 

covered dimensions of  10, 30, 50, and 100 to examine scalability. 

Function categories included: 

1. Unimodal (F1-F2): Tested exploitation and convergence 

2. Multimodal (F3-F9): Assessed local optima avoidance and exploration 

3. Hybrid (F10-F19) and composition (F20-F29): Evaluated balance between 

exploration/exploitation 

These carefully selected functions (detailed in Table 1) create a rigorous test environment for 

analyzing SBO's performance characteristics. 

 

 

Table 1. Information of  IEEE CEC 2017. 
ID Description Type Dimension Range Optimum 

F1 Shifted and Rotated Bent Cigar Function Unimodal 10,30,50,100 [-100,100] 100 
F2 Shifted and Rotated Zakharov function Unimodal 10,30,50,100 [-100,100] 300 
F3 Shifted and Rotated Rosenbrock’s function Multimodal 10,30,50,100 [-100,100] 400 
F4 Shifted and Rotated Rastrigin’s function Multimodal 10,30,50,100 [-100,100] 500 
F5 Shifted and Rotated Expanded Scaffer’s function Multimodal 10,30,50,100 [-100,100] 600 
F6 Shifted and Rotated Lunacek Bi-Rastrigin function Multimodal 10,30,50,100 [-100,100] 700 
F7 Shifted and Rotated Non-Continuous Rastrigin’s function Multimodal 10,30,50,100 [-100,100] 800 
F8 Shifted and Rotated Lévy function Multimodal 10,30,50,100 [-100,100] 900 
F9 Shifted and Rotated Schwefel’s function Multimodal 10,30,50,100 [-100,100] 1000 
F10 Hybrid Function 1 (N=3) Hybrid 10,30,50,100 [-100,100] 1100 
F11 Hybrid Function 2 (N=3) Hybrid 10,30,50,100 [-100,100] 1200 
F12 Hybrid Function 3 (N=3) Hybrid 10,30,50,100 [-100,100] 1300 
F13 Hybrid Function 4 (N=4) Hybrid 10,30,50,100 [-100,100] 1400 
F14 Hybrid Function 5 (N=4) Hybrid 10,30,50,100 [-100,100] 1500 
F15 Hybrid Function 6 (N=4) Hybrid 10,30,50,100 [-100,100] 1600 
F16 Hybrid Function 6 (N=5) Hybrid 10,30,50,100 [-100,100] 1700 
F17 Hybrid Function 6 (N=5) Hybrid 10,30,50,100 [-100,100] 1800 
F18 Hybrid Function 6 (N=5) Hybrid 10,30,50,100 [-100,100] 1900 
F19 Hybrid Function 6 (N=6) Hybrid 10,30,50,100 [-100,100] 2000 
F20 Composition Function 1 (N=3) Composition 10,30,50,100 [-100,100] 2100 
F21 Composition Function 2 (N=3) Composition 10,30,50,100 [-100,100] 2200 
F22 Composition Function 3 (N=4) Composition 10,30,50,100 [-100,100] 2300 
F23 Composition Function 4 (N=4) Composition 10,30,50,100 [-100,100] 2400 
F24 Composition Function 5 (N=5) Composition 10,30,50,100 [-100,100] 2500 
F25 Composition Function 6 (N=5) Composition 10,30,50,100 [-100,100] 2600 
F26 Composition Function 7 (N=6) Composition 10,30,50,100 [-100,100] 2700 
F27 Composition Function 8 (N=6) Composition 10,30,50,100 [-100,100] 2800 
F28 Composition Function 9 (N=3) Composition 10,30,50,100 [-100,100] 2900 
F29 Composition Function 10 (N=3) Composition 10,30,50,100 [-100,100] 3000 

 

To validate the SBO, a comparative analysis was conducted with 13 state-of-the-art algorithms, 

chosen based on their diversity, relevance, and performance merits in prior studies. These algorithms 

represent a variety of  optimization strategies, including human-behavior-inspired approaches, swarm 

intelligence, and evolutionary techniques. This selection includes two human-behavior inspired 

algorithms—the renowned TLBO [30] and the widely acknowledged PO [37]—as well as two recently 



 

proposed algorithms with significant citations: Harris Hawks Optimization (HHO) [48] and a physical-

based optimization algorithm, RIME [49]. Additionally, the comparison featured four acclaimed and 

potent PSO variants: PSO with Aging Leader and Challengers (ALCPSO) [50], Comprehensive 

Learning Particle Swarm Optimization (CLPSO) [51], Cooperatively Coevolving Particle Swarm 

Optimization (CGPSO) [52], and A Multi-Swarm Particle Swarm Optimization (MSPSO) [53]. 

Complementing these were five evolutionary algorithms known for their championship status: 

Covariance Matrix Adaptation Evolution Strategy (CMAES) [54], Differential Evolution with a Chaotic 

Local Search (DECLS) [55], Ensemble Sinusoidal Differential Covariance Matrix Adaptation with 

Euclidean Neighborhood (LSHADE_cnEpSin) [56], Sine Cosine Algorithm Differential Evolution 

(SCADE) [57], and Success-History Based Parameter Adaptation for Differential Evolution (SHADE) 

[58]. Table 2 summarizes the key characteristics and parameter settings for these algorithms. 

To ensure objective comparison, the parameter settings for each algorithm followed the values 

recommended in their original publications. These settings maintained consistency with their intended 

design and represented optimal or near-optimal configurations as established in previous studies. All 

algorithms operated under identical computational conditions: 

• Fixed population size: 30 

• Maximum function evaluations: 300,000 

• Same termination criteria 

This standardized approach ensured fair comparisons while avoiding algorithm-specific 

tuning due to computational limitations. 

Analysis results (Avg and Std over 30 independent runs) demonstrate the algorithms' stability and 

robustness when solving the benchmark functions. While our methodology ensures fairness, we 

acknowledge that individual parameter tuning could further improve performance and influence results. 

Future research will investigate this aspect for more complete benchmarking. 

 

Furthermore, statistical assessments, such as the Friedman test [59] and the Wilcoxon signed-rank 

test [60], were employed to analyze the results due to the stochastic nature of  the algorithms. These 

statistical tests, complemented by the average value and standard deviation, ascertained the overall 

performance and benchmarked the statistical significance of  the comparative results. Notably, the 

significance threshold was set at 0.05, with the resulting p-values indicative of  statistical significance 

between the proposed SBO and its competitors. Tables will subsequently illustrate the comprehensive 

comparison of  p-values across the four distinct dimensions following the benchmark results. 

 

Table 2. Parameter settings for involved algorithms. 

Algorithm Other parameters 

TLBO 𝑁𝑜𝑛𝑒 

PO 𝜆 = 1, 𝑛 = 7 

HHO 𝐸 = [−2,2] 

RIME 𝑊 = 5 

ALCPSO 𝑤 = 0.4, 𝑐1 = 2, 𝑐2 = 2, 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 = 60, 𝑇 = 2, 𝑝𝑟𝑜 = 1/𝐷 

CLPSO 𝑤𝑚𝑎𝑥 = 0.9,𝑤𝑚𝑖𝑛 = 0.4, 𝑐 = 1.49445 

CGPSO 𝑣𝑚𝑎𝑥 = 6, 𝑐1 = 2, 𝑐2 = 2 

MSPSO 𝑣𝑚𝑎𝑥 = 6, 𝑣min = −6,𝑤max = 0.9,𝑤min = 0.2, c1 = 2, c2 = 2 

CMAES 𝜆 = 4 + ⌊3 𝑙𝑛(𝑁)⌋, 𝑤𝑖
′ = 𝑙𝑛 (

𝜆 + 1

2
) − 𝑙𝑛𝑖, 𝜇 = ⌊

𝜆

2
⌋ , 𝜎 = 0.3, 𝐶𝑐 =

4

𝑁 + 4
 



 

DECLS 𝑁𝑃 = 𝐷, 𝐹 = 0.5, 𝑝𝐶𝑅 = 0.5, L =
D

5
,m = 1500 

LSHADE_cnEpSin 𝑁𝑃𝑚𝑎𝑥 = 18 × 𝐷,𝑁𝑃𝑚𝑖𝑛 = 4,𝐻 = 5, |𝐴| = 1.4 × 𝑁𝑃, 𝑝 = 0.11  

SCADE 𝛽𝑚𝑎𝑥 = 0.8, 𝛽𝑚𝑖𝑛 = 0.2, 𝑝𝐶𝑅 = 0.8 

SHADE |𝐴| = 2 × 𝑁𝑃, 𝑝 = 0.1 

 

4.3 Benchmark Results and Statistical Analysis 

The SBO algorithm was comprehensively evaluated against 13 state-of-the-art algorithms using 

the IEEE CEC 2017 benchmark suite, which includes 29 functions spanning unimodal, multimodal, 

hybrid, and composition types. These functions were tested across four dimensions (10, 30, 50, and 100) 

to assess SBO’s scalability, robustness, and adaptability to varying problem complexities. The 

comparative results, including Avg and Std across 30 independent runs, are provided in Table A. 1–A.4, 

with corresponding p-values detailed in Table A. 5–A.8. Statistical tests, including the Friedman test 

and Wilcoxon signed-rank test, were performed to evaluate the significance of  the results, and their 

summarized statistics are presented in Table 3. 

SBO demonstrated strong and consistent performance across all dimensions, achieving average 

first-place rankings in 36% of  the benchmark functions. Its strengths were particularly evident in hybrid 

and composition functions, where balancing exploration and exploitation is critical. A heatmap (Fig. 7) 

visualizes the normalized performance of  all algorithms across functions and dimensions, with warmer 

colors indicating superior results. In this visualization, SBO frequently stands out as one of  the top-

performing algorithms, particularly for higher-dimensional hybrid and composition functions, 

showcasing its adaptability to complex optimization problems. 

 

 
Fig. 7. Algorithm performance heatmap across four dimensions. 



 

 

In unimodal functions (F1–F2), which focus on exploitation and precision, SBO ranked 

competitively but was slightly outperformed by precision-focused algorithms such as CMAES, 

LSHADE_cnEpSin, and LSHADE. On average, SBO secured fourth place in this category across all 

dimensions, demonstrating its robustness despite a minor trade-off  in precision. For multimodal 

functions (F3–F9), SBO exhibited strong exploratory capabilities, consistently avoiding local optima 

and achieving competitive rankings. For example, it secured fourth place in F5 while maintaining high 

stability across the category. The algorithm’s performance was most pronounced in hybrid (F10–F19) 

and composition functions (F20–F29), where it consistently achieved first-place rankings in functions 

such as F13, F14, and F22–F29. These results highlight SBO’s ability to adapt effectively to dynamic 

landscapes that require a balance between exploration and exploitation. 

The 30-dimensional results provide deeper insights into SBO’s performance, particularly its 

convergence behavior and robustness. Convergence curves (Fig. 8) for selected benchmark functions 

illustrate SBO’s steady improvement in solution quality over iterations. For unimodal functions like F1 

and F2, SBO maintained consistent convergence rates, closely trailing CMAES and LSHADE in 

precision. In hybrid and composition functions, such as F13, F14, and F29, SBO demonstrated superior 

convergence speed, reflecting its ability to identify promising regions of  the search space while avoiding 

premature stagnation. Additionally, box plots (Fig. 9) of  SBO’s performance across 30 independent 

runs reveal its low variance compared to algorithms like TLBO and PO, which exhibited higher 

variability. This stability underscores SBO’s reliability, particularly for hybrid and composition functions, 

where consistent performance is crucial. 

 



 

 
Fig. 8. Convergence curves of  SBO and state-of-the-art algorithms for 30-dimensional problems. 

 



 

 
Fig. 9. Box plots comparing SBO and state-of-the-art algorithms for 30-dimensional problems. 

 

The competitive advantage of  SBO is further validated by the statistical analyses. As visualized in 

Fig. 10, the Friedman test results indicate that SBO achieved the highest average rank across all 

dimensions, with values of  3.90, 4.07, 4.38, and 4.48 for 10, 30, 50, and 100 dimensions, respectively. 

These rankings highlight SBO’s scalability and its consistent ability to perform well across varying 

problem complexities. The Wilcoxon signed-rank test results, summarized in Table 3, reveal that SBO 

outperformed TLBO, PO, HHO, and RIME in over 70% of  the benchmark functions, with p-values 

below the significance threshold (0.05). While its advantage against LSHADE_cnEpSin and LSHADE 

was less pronounced, SBO maintained competitiveness, outperforming them in a subset of  functions. 

 



 

 
Fig. 10. Friedman rank result of  algorithms across four dimensions. 

 

The SBO algorithm’s outstanding performance stems from its faithful modeling of  status-seeking 

social behaviors, particularly learning from high-performing peers and strategically retaining beneficial 

information. These mechanisms enable SBO to achieve an effective balance between exploration and 

exploitation, allowing it to perform well across both low- and high-dimensional problems. Specifically, 

its resource retention strategy gives SBO an edge in hybrid and composition functions, where it 

demonstrates both rapid convergence and remarkable stability across runs. Although SBO’s 

performance on unimodal functions was marginally below that of  precision-focused algorithms, its 

overall adaptability, stability, and scalability establish it as a highly capable solution for diverse 

optimization tasks. 

 

Table 3. WSRT and FT results of  SBO and other algorithms on IEEE CEC 2017. 
Dimension Item SBO TLBO PO HHO RIME ALCPSO CLPSO 

10 
+/-/= ~ 22/0/7 18/2/9 21/1/7 18/6/5 18/3/8 14/13/2 
Rank 3.8966 8.6552 8.8621 9.1379 7.7241 9.0000 4.2759 
Result 1 8 9 11 7 10 3 

30 
+/-/= ~ 21/0/8 16/2/11 21/0/8 20/7/2 21/4/4 15/11/3 
Rank 4.0690 9.6207 7.9655 7.8276 7.4828 8.5517 5.4828 
Result 1 13 9 8 7 10 3 

50 
+/-/= ~ 21/0/8 16/5/8 21/0/8 17/7/5 20/5/4 12/13/4 
Rank 4.3793 10.1379 7.8276 7.6552 7.4138 8.8621 5.4138 
Result 1 13 9 8 7 11 3 

100 
+/-/= ~ 21/0/8 14/5/10 21/0/8 16/6/7 18/5/6 13/14/2 
Rank 4.4828 9.9655 7.5517 7.4138 7.8276 9.0345 5.7586 
Result 1 13 9 7 10 11 3 

Dimension Item CGPSO MSPSO CMAES DECLS LSHADE_cnEpSin SCADE SHADE 

10 
+/-/= 28/1/0 23/3/3 24/1/4 14/10/5 10/9/10 23/0/6 8/16/5 
Rank 9.4138 7.3103 10.3103 5.3448 4.4138 10.3103 4.0000 
Result 12 6 13 5 4 13 2 

30 
+/-/= 27/0/2 20/5/4 21/6/2 18/7/4 14/14/1 24/0/5 14/14/1 
Rank 8.9310 6.9310 8.6207 6.0000 5.7931 10.8276 4.6207 
Result 12 6 11 5 4 14 2 

50 
+/-/= 29/0/0 14/10/5 19/9/1 20/5/4 12/12/5 23/0/6 13/16/0 
Rank 9.1034 6.2414 8.1379 7.0000 5.9655 10.1379 4.5517 
Result 12 5 10 6 4 13 2 

+/-/= 28/1/0 13/15/1 18/10/1 21/6/2 13/13/3 24/0/5 11/17/1 



 

100 Rank 9.0345 5.8276 7.5172 7.0690 5.8621 10.6552 4.7241 
Result 11 4 8 6 5 14 2 

 

4.4 Runtime Performance Analysis 

To comprehensively evaluate the runtime performance of  the proposed SBO algorithm, we 

conducted experiments using the IEEE CEC 2017 benchmark suite, consisting of  29 distinct functions. 

Each algorithm, including SBO and 13 state-of-the-art competitors, was executed 30 times 

independently for each benchmark function across four dimensions: 10, 30, 50, and 100. The runtime 

performance was measured as the average runtime (in seconds) across all 30 runs for the 29 functions 

at each dimension. The results are summarized in Table 4 and visualized in Fig. 11. 

The algorithms considered in the comparison include TLBO, PO, HHO, a physics-based algorithm 

RIME, four PSO variants (ALCPSO, CLPSO, CGPSO, and MSPSO), and five evolutionary algorithms 

(CMAES, DECLS, LSHADE_cnEpSin, SCADE, and SHADE). 

The runtime results reveal that SBO demonstrates competitive performance across all tested 

dimensions. At the smallest dimension (𝐷 = 10), SBO achieves the second-fastest runtime (28.08 

seconds), trailing only CGPSO (27.57 seconds). As the problem dimension increases, SBO consistently 

ranks as the fastest algorithm, achieving the shortest runtime for dimensions 𝐷 = 30, 𝐷 = 50, and 

𝐷 = 100, with average runtimes of  74.25, 151.24, and 478.73 seconds, respectively. 

Compared to slower algorithms, such as LSHADE_cnEpSin and SCADE, SBO exhibits 

significantly better scalability. The results suggest that SBO’s computational efficiency becomes 

increasingly pronounced in higher dimensions. This improvement can be attributed to the efficient 

mechanisms employed by SBO, which reduce unnecessary computational overhead during resource 

evaluation and updates. 

The visualization in Fig. 11 highlights SBO's runtime performance across dimensions, showcasing 

its consistency and scalability. While some algorithms, such as TLBO and ALCPSO, remain competitive, 

SBO’s superior runtime at higher dimensions reinforces its suitability for large-scale optimization tasks. 

Despite these findings, it is important to note that runtime performance may vary across 

computational environments due to differences in hardware and software configurations. Future studies 

will aim to standardize additional runtime evaluations across diverse platforms to validate these results 

further. 

 

Table 4. Runtime performance of  SBO and other algorithms on IEEE CEC 2017. 

Dimension SBO TLBO PO HHO RIME ALCPSO CLPSO 

10 28.08  32.07  60.36  59.10  48.11  39.17  39.92  
30 74.25  77.67  101.20  107.86  88.65  92.48  107.64  
50 151.24  155.10  190.04  217.82  175.12  157.99  181.29  
100 478.73  483.49  551.37  683.48  531.06  496.47  535.68  

Dimension CGPSO MSPSO CMAES DECLS LSHADE_cnEpSin SCADE SHADE 

10 27.57  81.57  67.94  32.75  94.44  57.67  42.16  
30 112.18  128.53  111.10  101.04  179.70  135.75  92.36  
50 180.14  160.21  177.28  182.29  248.05  259.45  176.46  
100 577.42  486.66  522.08  515.72  636.77  770.86  520.70  

 



 

 
Fig. 11. Runtime performance of  SBO with other algorithms on IEEE CEC 2017. 

 

5. Experimental Verification 

This section applies the SBO framework to two important optimization applications: feature selection 

and multi-threshold image segmentation. To solve the classic discrete optimization challenge of  feature 

selection, SBO is converted into its binary variant, bSBO. This adaptation builds upon SBO's 

demonstrated efficiency in global optimization within continuous spaces, supporting its potential for 

discrete applications. The bSBO is engineered to optimize feature selection by selecting the most 

relevant attributes while eliminating redundancy, thereby improving predictive model performance 

through optimal feature selection. The proposed bSBO is then combined with the KNN classifier to 

validate performance. Finally, bSBO is benchmarked against 8 state-of-the-art binary optimizers across 

9 high-dimensional UCI datasets, proving its competitive advantage in discrete optimization. 

Moving beyond feature selection; we also evaluate SBO's performance in multi-threshold image 

segmentation—a continuous optimization task requiring precise threshold determination for accurate 

image analysis. For this assessment, SBO competes against 7 cutting-edge meta-heuristic algorithms 

using 9 breast cancer histology images from Invasive Ductal Carcinoma (IDC) dataset to measure 

segmentation quality improvements. By maintaining an optimal exploration-exploitation balance, SBO 

proves highly adaptable across both discrete and continuous problem domains, confirming its versatility 

for various real-world optimization challenges. 

 

5.1 Feature Selection 

Feature selection is a critical process in dataset analysis that involves picking the most influential 

and significant features to reduce data dimensionality and omitting redundant and unrelated attributes 



 

[61]. This selective extraction not only enhances the generality and robustness of  the model trained on 

these features but also streamlines the computational efficiency. Predominantly, there are three 

recognized methodologies for feature selection: the filter method [62], the embedded method [63], and 

the wrapper method [64]—each characterized by distinct selection procedures. 

The filter method evaluates feature relevance using statistical metrics, such as the Pearson 

correlation coefficient [65] for linear feature-target relationships, the Chi-squared test [66] for 

information gain, and variance thresholding [67] to discard low variance features. These assessments 

are uniquely machine learning algorithm-independent. In contrast, the embedded method conducts 

selection intrinsically during the model training phase, integrating feature importance evaluation into 

the optimization process, with popular techniques including Lasso Regression [68], known as L1 

Regularization, which penalizes regression coefficients' absolute value to zero out less significant 

features, and tree-based methods [69] that automatically determine feature importance. Unlike both 

approaches, the wrapper method evaluates feature subsets through iterative model training, selecting 

those that maximize performance based on evaluation metrics, making this method more 

computationally intensive but often more accurate. 

This paper specifically focuses on the bSBO—an MA that iteratively searches for the optimal 

feature subset, assessed against a fitness-function-based evaluation metric. Given the exponential 

increase of  potential feature combinations with every additional feature, MAs like the proposed bSBO 

become helpful for managing the combinatorial nature of  the feature selection issue, thereby making 

wrapper-based feature selection an increasingly popular choice in current practices for dataset 

dimensionality reduction. 

5.1.1 bSBO-based Wrapper method 

In this section, we present the wrapper-based feature selection method that integrates a KNN 

classifier (with K set to 5) with the bSBO. A detailed flowchart in Fig. 12 outlines the process for 

selecting an effective feature subset. 

The fitness function is formulated to achieve a trade-off  between minimizing the number of  

selected features and reducing the classifier's error rate. Let 𝐸 represent the error rate of  the KNN 

classifier, |𝑆| denote the number of  features selected by the bSBO, and |𝐴| the total number of  features 

in the dataset. The fitness function is defined in Eq. (17). With the parameters set to 𝛼 = 0.05 and 

𝛽 = 0.95 , ensuring that more emphasis is placed on the error rate. This formulation guides the 

optimizer to favor solutions that maintain high predictive accuracy while selecting a compact feature 

subset. 

 
𝑓𝑜𝑏𝑗 = 𝛼 × 𝐸 + 𝛽 ×

|𝑆|

|𝐴|
 (17) 

 

The process begins with data preprocessing. The dataset is divided into ten folds and normalized 

to the range [−1,1]. Each candidate solution is represented as a vector of  continuous values, which are 

then transformed into binary decisions to indicate whether a feature is selected. This conversion is 

achieved through a V-type transfer function defined as: 

 
𝑇(𝑥𝑖,𝑗) = |𝑒𝑟𝑓 (𝑠𝑞𝑟𝑡 (

𝜋

2
) × 𝑥𝑖,𝑗)| (18) 

 
𝑒𝑟𝑓(𝑥) =

2

𝑠𝑞𝑟𝑡(𝜋)
∫ 𝑒−𝑡2

𝑥

0

𝑑𝑡 (19) 



 

where 𝑥𝑖,𝑗 is the continuous value of  the 𝑗𝑡ℎ component of  the 𝑖𝑡ℎ candidate solution. The resulting 

value is then thresholded at 0.5 to yield a binary decision for feature selection. 

Following the transformation, each candidate solution corresponds to a binary vector of  length 

𝐷, representing the dimensionality of  the dataset. The selected feature subset is used to train the KNN 

classifier on the training data, and its performance is evaluated on the test set to compute the error rate 

𝐸. 

The bSBO iteratively updates the candidate solutions over a fixed number of  iterations. The fitness 

function is evaluated at each iteration, and the candidate feature subsets are refined accordingly. Once 

the optimization process concludes, the best-performing feature subset is used to train the final KNN 

model, and its predictive accuracy is assessed on the test dataset. 

The performance of  the bSBO-based approach is evaluated by considering three metrics: the 

average fitness value across multiple trials, the error rate of  the KNN classifier, and the number of  

features selected. These metrics comprehensively assess the method's ability to achieve both model 

accuracy and feature reduction. Comparative analysis against eight state-of-the-art binary optimizers 

further demonstrates the effectiveness of  the proposed approach in producing robust and interpretable 

models. 

 

 
Fig. 12. Flowchart of  bSBO-based wrapper method for feature selection. 

 



 

5.1.2 Experiment results and analysis of  bSBO 

This section is dedicated to evaluating the optimization capabilities of  bSBO by setting it in direct 

competition with eight state-of-the-art binary optimizers. These comparators are binary Moth Flame 

Optimizer (bMFO) [70], bGWO [71], bGSA [72], bPSO [73], binary Ant Lion Optimizer (bALO) [74], 

binary Bat Algorithm (bBA) [75], binary Salp Swarm Algorithm (bSSA) [76], and bHHO [77]. Each 

optimizer’s control parameters follow their original publications. 

The datasets chosen for this comparison are diverse and representative, presented in Table 5 from 

UCI machine learning repository, with dimensions ranging from 2,308 to 12,600, ensuring 

comprehensive benchmarking. Additionally, the variety in the number of  classes—from two to four—

alongside sample sizes stretching from 50 to 203 per dataset, provides a robust framework for assessing 

the optimization prowess of  bSBO against established binary optimizers across a range of  complex 

data environments. 

 

Table 5. Description of datasets. 

Dataset Samples Features Classes 

Brain_Tumor2 50 10367 4 
CNS 60 7129 2 
DLBCL 77 5469 2 
Leukemia 72 7130 2 
Leukemia1 72 5327 3 
Leukemia2 72 11225 3 
Lung_Cancer 203 12600 3 
Prostate_Tumor 102 10509 2 
SRBCT 83 2308 4 

 

To standardize conditions across all optimized algorithms, the experimental design imposes a 

termination criterion of  50 maximum iterations and a specified population size of  20. To mitigate the 

influence of  randomness on the results, each optimizer is run 10 times for every dataset. Furthermore, 

to evaluate the performance of  the trained models, a 10-fold cross-validation [78] is employed for each 

dataset, which is a widely recognized method for ensuring the validity of  the machine learning models. 

The results of  these experiments are presented in Table 6 to Table 8, which provide comparative 

data on fitness values, the number of  features selected, and the error rates for bSBO and the eight other 

binary optimizers. To quantitatively establish the superiority of  bSBO over its counterparts, the results 

are subjected to statistical analysis employing the Wilcoxon signed-rank test and the Friedman test. 

These non-parametric tests are chosen for their ability to detect significant differences between paired 

observations and to compare more than two algorithms over multiple datasets, respectively, providing 

a robust statistical framework to support the comparative analysis. 

Table 6 presents a detailed comparison of  fitness values, revealing that bSBO achieves the lowest 

fitness scores on all nine datasets when compared with the eight other binary optimizers. However, it is 

important to note certain deviations, specifically the higher Std values for Leukemia2, Lung_Cancer, 

and Prostate_Tumor datasets, where bSBO recorded larger Std values than bHHO, bMFO, and bHHO 

respectively. 

Despite these variances in Std values, the statistical tests presented at the bottom of  Table 6 

strongly support bSBO's superior performance. It conclusively outperformed the other eight optimizers 

across all datasets, securing the top rank with a ranking value of  1. This distinctively places bSBO ahead 



 

of  its closest competitor, bHHO, which achieved a secondary ranking value of  2.25. The inclusion of  

these statistical tests validates the robustness of  bSBO's leading position in optimizing fitness values 

within the experimented datasets. 

 

Table 6. Comparative results of  average fitness values between bSBO and other binary optimizers. 

Dataset Metric bSBO bMFO bGWO bGSA bPSO bALO bBA bSSA bHHO 

Brain_Tu
mor2 

Std 3.80E-06 1.83E-04 6.00E-02 1.12E-01 1.18E-01 9.62E-02 2.30E-01 8.49E-02 8.82E-02 

Avg 9.65E-06 1.71E-04 5.74E-03 1.02E-01 2.39E-02 2.37E-02 2.04E-02 1.95E-02 9.27E-03 

CNS 

Std 2.25E-05 2.25E-04 6.67E-02 7.91E-02 1.09E-01 8.34E-02 1.48E-01 1.31E-01 1.23E-04 

Avg 1.75E-05 2.77E-04 5.86E-03 2.32E-02 1.82E-01 1.70E-01 2.37E-01 1.04E-01 4.21E-05 

DLBCL 

Std 7.21E-06 1.08E-04 2.80E-04 3.77E-02 3.75E-02 3.28E-04 3.70E-02 4.41E-02 1.88E-05 

Avg 1.83E-05 1.14E-04 5.33E-03 2.16E-02 2.34E-02 2.29E-02 2.14E-02 2.23E-03 1.83E-05 

Leukemia 

Std 5.73E-06 6.30E-05 2.55E-04 1.97E-04 2.49E-04 2.12E-04 3.22E-03 8.97E-03 1.85E-05 

Avg 1.40E-05 7.71E-05 5.49E-03 2.18E-02 2.34E-02 2.30E-02 1.65E-02 2.40E-02 1.75E-05 

Leukemia
1 

Std 6.07E-05 1.86E-04 3.53E-04 3.55E-04 2.06E-04 2.32E-04 4.23E-02 6.53E-03 1.06E-04 

Avg 1.88E-05 1.88E-04 5.28E-03 2.14E-02 2.31E-02 2.27E-02 1.79E-02 2.30E-02 5.16E-05 

Leukemia
2 

Std 2.44E-05 8.46E-05 1.76E-04 3.60E-04 5.38E-02 5.38E-02 6.16E-02 5.90E-02 2.27E-05 

Avg 1.78E-05 1.45E-04 5.43E-03 2.25E-02 2.37E-02 2.35E-02 1.76E-02 2.42E-02 3.12E-05 

Lung_Can
cer 

Std 4.02E-04 3.11E-04 2.11E-02 3.41E-02 3.41E-02 2.23E-02 4.27E-02 3.13E-02 2.30E-02 

Avg 8.13E-05 5.58E-04 6.01E-03 4.45E-02 4.68E-02 2.39E-02 4.29E-02 3.86E-02 8.64E-03 

Prostate_
Tumor 

Std 6.37E-05 1.89E-04 2.99E-02 4.80E-02 7.66E-02 4.80E-02 9.69E-02 5.15E-02 5.22E-05 

Avg 2.62E-05 2.47E-04 6.19E-03 2.30E-02 2.42E-02 2.38E-02 1.11E-01 6.77E-02 7.14E-05 

SRBCT 

Std 7.81E-05 1.04E-04 2.85E-04 4.19E-04 3.74E-02 3.50E-04 4.82E-02 4.93E-02 1.50E-04 

Avg 1.08E-04 1.95E-04 4.15E-03 1.95E-02 2.22E-02 2.16E-02 1.73E-02 2.24E-02 1.19E-04 

+/-/= ~ ~ 9/0/0 9/0/0 9/0/0 9/0/0 9/0/0 9/0/0 9/0/0 8/1/0 

Friedman-
rank 

 1.00  2.88  3.88  5.88  7.88  6.63  8.38  6.25  2.25  

Result  1 3 4 5 8 7 9 6 2 

 

Table 7 and Table 8 show the results regarding the number of  selected features and the 

corresponding error rates of  the machine learning models trained with those features. These tables also 

feature the non-parametric statistical results at the bottom for a thorough analytical insight. The findings 

indicate that bSBO not only selects the minimal number of  features but also accomplishes the lowest 

error rates across the nine datasets. According to the rankings for both the number of  selected features 

and the error rates, bSBO consistently achieves the top position with a rank of  1. 

In Table 7, there are observations of  larger Std values corresponding to the Leukemia2, 

Lung_Cancer, and Prostate_Tumor datasets, but the small difference in Std values when comparing 

bSBO with bHHO, bGSA, and bHHO respectively underscores the consistency and robustness of  

bSBO. 

For enhanced visual interpretation and comparative analysis of  bSBO's robust performance 

against other optimizers, Fig. 13 presents the Friedman rank results using a bar plot. This visualization 

clearly depicts the relative performance of  different optimizers across multiple evaluation metrics. 

Lower ranks indicate better performance, with bSBO achieving the most favorable rankings and thereby 

demonstrating its consistent superiority. 



 

 

Table 7. Comparative results of  average selected feature numbers between bSBO and other binary 
optimizers. 

Dataset Metric bSBO bMFO bGWO bGSA bPSO bALO bBA bSSA bHHO 

Brain_Tu
mor2 

Std 7.89E-01 3.80E+01 4.77E+01 5.66E+01 7.97E+01 5.94E+01 2.28E+02 2.21E+03 6.36E+02 

Avg 2.00E+00 3.55E+01 1.17E+03 4.67E+03 4.93E+03 4.89E+03 4.15E+03 2.90E+03 1.25E+03 

CNS 

Std 3.21E+00 3.21E+01 4.09E+01 6.98E+01 4.78E+01 4.93E+01 2.45E+02 1.25E+03 1.76E+01 

Avg 2.50E+00 3.95E+01 8.35E+02 3.23E+03 3.39E+03 3.33E+03 2.89E+03 3.49E+03 6.00E+00 

DLBCL 

Std 7.89E-01 1.18E+01 3.06E+01 3.84E+01 2.29E+01 3.59E+01 1.44E+02 1.20E+03 2.06E+00 

Avg 2.00E+00 1.25E+01 5.83E+02 2.36E+03 2.56E+03 2.50E+03 2.28E+03 2.44E+02 2.00E+00 

Leukemia 

Std 8.17E-01 8.99E+00 3.63E+01 2.81E+01 3.55E+01 3.02E+01 1.46E+02 1.28E+03 2.63E+00 

Avg 2.00E+00 1.10E+01 7.83E+02 3.11E+03 3.34E+03 3.28E+03 2.88E+03 3.42E+03 2.50E+00 

Leukemia
1 

Std 6.47E+00 1.98E+01 3.76E+01 3.78E+01 2.19E+01 2.47E+01 7.35E+01 6.96E+02 1.13E+01 

Avg 2.00E+00 2.00E+01 5.62E+02 2.28E+03 2.47E+03 2.42E+03 2.20E+03 2.45E+03 5.50E+00 

Leukemia
2 

Std 5.48E+00 1.90E+01 3.94E+01 8.07E+01 3.66E+01 3.76E+01 6.39E+02 1.97E+03 5.09E+00 

Avg 4.00E+00 3.25E+01 1.22E+03 5.04E+03 5.32E+03 5.27E+03 4.48E+03 5.39E+03 7.00E+00 

Lung_Can
cer 

Std 1.01E+02 7.84E+01 8.37E+01 2.77E+01 5.77E+01 7.66E+01 2.72E+02 2.37E+03 2.85E+02 

Avg 2.05E+01 1.41E+02 1.51E+03 5.74E+03 6.04E+03 5.97E+03 5.11E+03 4.85E+03 1.96E+03 

Prostate_
Tumor 

Std 1.34E+01 3.97E+01 6.06E+01 6.86E+01 3.51E+01 4.59E+01 2.26E+02 1.58E+03 1.10E+01 

Avg 5.50E+00 5.20E+01 1.28E+03 4.74E+03 5.07E+03 4.98E+03 4.26E+03 5.15E+03 1.50E+01 

SRBCT 

Std 3.60E+00 4.78E+00 1.32E+01 1.94E+01 1.73E+01 1.62E+01 4.66E+01 2.05E+02 6.93E+00 

Avg 5.00E+00 9.00E+00 1.92E+02 8.99E+02 1.02E+03 9.97E+02 9.22E+02 1.03E+03 5.50E+00 

+/-/= ~ ~ 9/0/0 9/0/0 9/0/0 9/0/0 9/0/0 9/0/0 9/0/0 8/1/0 

Friedman-
rank 

 1.00  2.88  3.88  6.75  9.00  8.00  6.00  5.25  2.25  

Result  1 3 4 7 9 8 6 5 2 

 

Table 8. Comparative results of  average error rates between bSBO and other binary optimizers. 

Dataset Metric bSBO bMFO bGWO bGSA bPSO bALO bBA bSSA bHHO 

Brain_Tu
mor2 

Std 0.00E+00 0.00E+00 6.32E-02 1.18E-01 1.25E-01 1.01E-01 2.97E-01 8.31E-02 9.39E-02 

Avg 0.00E+00 0.00E+00 0.00E+00 8.33E-02 0.00E+00 0.00E+00 2.25E-01 0.00E+00 0.00E+00 

CNS 

Std 0.00E+00 0.00E+00 7.03E-02 8.33E-02 1.15E-01 8.79E-02 1.07E-01 1.39E-01 0.00E+00 

Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.67E-01 1.55E-01 3.33E-01 8.33E-02 0.00E+00 

DLBCL 

Std 0.00E+00 0.00E+00 0.00E+00 3.95E-02 3.95E-02 0.00E+00 9.71E-02 3.95E-02 0.00E+00 

Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Leukemia 

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.17E-02 0.00E+00 0.00E+00 

Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Leukemia
1 

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.31E-02 0.00E+00 0.00E+00 

Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.14E-02 0.00E+00 0.00E+00 

Leukemia
2 

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.66E-02 5.66E-02 1.16E-01 6.02E-02 0.00E+00 

Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Lung_Can
cer 

Std 0.00E+00 0.00E+00 2.22E-02 3.59E-02 3.60E-02 2.34E-02 5.18E-02 4.03E-02 2.42E-02 

Avg 0.00E+00 0.00E+00 0.00E+00 2.27E-02 2.38E-02 0.00E+00 9.52E-02 2.38E-02 0.00E+00 



 

Prostate_
Tumor 

Std 0.00E+00 0.00E+00 3.16E-02 5.05E-02 8.06E-02 5.05E-02 1.27E-01 5.09E-02 0.00E+00 

Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.50E-01 4.55E-02 0.00E+00 

SRBCT 

Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.95E-02 0.00E+00 5.95E-02 4.99E-02 0.00E+00 

Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.11E-01 0.00E+00 0.00E+00 

+/-/= ~ ~ 1/8/0 5/4/0 5/4/0 7/2/0 5/4/0 8/1/0 7/2/0 2/7/0 

Friedman-
rank 

 1.00  1.13  2.50  3.88  6.13  4.25  9.00  5.88  1.63  

Result  1 2 4 5 8 6 9 7 3 

 

 
Fig. 13. Friedman rank results over three metrics. 

 

In contrast, other optimizers show greater rank fluctuations, reflecting performance 

inconsistencies across different evaluation criteria. Notably, bSSA exhibits significant rank variability, 

suggesting a lack of  robustness compared to bSBO. The bar plot effectively illustrates these differences, 

thereby underscoring the stability and overall superior performance of  bSBO among the evaluated 

optimizers. 

Fig. 14 illustrates the convergence curves for each optimizer over multiple iterations, showing the 

progression toward optimal fitness values on each dataset. The curves demonstrate that bSBO achieves 

the optimal fitness values across all nine datasets and does so more quickly than the other optimizers, 

particularly within the first 50 iterations. This suggests that while other optimizers may experience early 

stagnation, bSBO continues to identify superior feature subsets efficiently. Specifically, for the 

Prostate_Tumor dataset, bHHO demonstrates competitive performance relative to bSBO. A closer 

examination reveals subtle advantages of  bSBO that may not be immediately apparent. 



 

 
Fig. 14. Convergence curves of  bSBO and eight binary optimizers over nine datasets. 

 

The experimental results concerning the feature selection tasks effectively highlight the exceptional 

optimization capacity of  bSBO, facilitated by the V-type transfer function, which adeptly translates the 

capabilities of  the SBO algorithm from continuous to discrete optimization contexts. bSBO's 

performance has been comprehensively evaluated using three distinct metrics, underscoring its superior 

optimization abilities. These impressive results are attributed to the inherent global optimization 

strength of  the SBO algorithm. Additionally, the mathematical modeling of  human social upward 

mobility has granted SBO a distinct advantage, mirroring the way individuals connect and learn from 

high-status peers within complex social networks. By accessing and utilizing valuable information and 

resources, individuals can enhance their abilities—similar to how the SBO algorithm benefits from its 

comprehensive global search strategy, evolving toward improved solutions. This human-like learning 

and improvement dynamic within SBO is a testament to its design, significantly contributing to its 

effectiveness in feature selection tasks. 

Building on this success, the following section extends the application of  bSBO to the domain of  

image segmentation, where its optimization capabilities are leveraged to address multi-threshold 

segmentation challenges. 



 

5.2 Multi-threshold Image Segmentation 

Multi-threshold image segmentation is a critical process in image analysis that involves determining 

multiple optimal threshold values to partition an image into distinct regions based on intensity variations 

[79]. This technique not only facilitates the separation of  key structures from the background but also 

enhances diagnostic accuracy in complex imaging scenarios, such as breast cancer detection. By 

delineating regions that represent various tissue types or pathological areas, multi-threshold 

segmentation plays a pivotal role in clinical decision-making and treatment planning. 

Predominantly, multi-threshold segmentation methods can be classified into three categories: 

histogram-based, entropy-based, and optimization-based approaches—each characterized by unique 

threshold selection mechanisms. Histogram-based methods derive threshold candidates by analyzing 

the distribution of  pixel intensities, thereby exploiting the natural clusters within the image data [80]. In 

contrast, entropy-based techniques, such as those using Kapur’s or Tsallis entropy, aim to maximize the 

information content or homogeneity of  the segmented regions [81]. Diverging from these, 

optimization-based methods cast the segmentation task as a search problem where a fitness function 

evaluates the quality of  candidate threshold sets [82]. This latter approach often employs meta-heuristic 

algorithms, which are adept at navigating the high-dimensional search space and avoiding local optima, 

albeit at the cost of  increased computational complexity. 

This paper specifically focuses on searching for the optimal set of  thresholds using Renyi entropy 

as the fitness function. By integrating Renyi entropy with a robust search strategy, our approach 

effectively addresses common challenges such as image noise and intensity inhomogeneity, thereby 

enhancing segmentation accuracy and computational efficiency. The subsequent sections detail the 

experimental settings—including the computing environment, parameter configurations, and 

performance evaluation metrics—followed by an application of  our method to the segmentation of  

breast cancer images. Through these experiments, we demonstrate the potential of  the proposed 

technique in accurately delineating tumor regions, ultimately contributing to improved diagnostic 

outcomes. 

5.2.1 Experiment settings 

The performance of  the proposed SBO for multi-threshold image segmentation was evaluated on 

a dataset comprising 9 breast cancer histology images. These images, sourced from the IDC dataset [83], 

were uniformly resized to 224 × 224 pixels. Labeled sequentially from A to I, the images are shown in 

Fig. 15 along with their corresponding two-dimensional histograms, which illustrate the intensity 

distributions essential for threshold determination. 

To assess the broad validity and robustness of  the SBO method, segmentation experiments were 

conducted using three distinct threshold configurations—specifically, 6, 12, and 18 thresholds. The 

proposed SBO was compared against 7 advanced meta-heuristic algorithms, namely: Levy flight Slime 

Mould combined Opposition-based learning Improved Fruit fly Optimization Algorithm (LSEOFOA) 

[84], Improved Whale Optimization Algorithm (IWOA) [85], Improved Grey Wolf  Optimizer (IGWO) 

[86], Adaptive Sin Cosine Algorithm (ASCA) [87], Iterative Mapping and Local Escaping Enhanced 

Salp Swarm Algorithm (ILSSA) [88], Effective Harris Hawks Algorithm Improved Salp Swarm 



 

Algorithm (EHSSA) [89], and Biogeography-Based Learning Particle Swarm Optimization (BLPSO) 

[90]. All methods were subjected to identical experimental conditions. 

For each segmentation task, each algorithm was executed independently 30 times to mitigate the 

effects of  stochastic variability. The mean (Avg) and standard deviation (Std) of  the results were 

subsequently recorded. A uniform population size of  20 was maintained across all experiments, and 

each algorithm was terminated after 100 iterations to ensure fairness in comparative analysis. Moreover, 

all methods were run using the default parameter values as established in their original publications. 

Segmentation quality was quantitatively evaluated using peak signal-to-noise ratio (PSNR), feature 

similarity index (FSIM), and structural similarity index (SSIM). These metrics collectively assess the 

fidelity, feature preservation, and structural integrity of  the segmented images relative to the original 

data. The comprehensive experimental framework, characterized by controlled conditions and 

standardized evaluation criteria, provides a robust basis for comparing the performance of  the SBO 

algorithm with that of  other MA-based approaches. 

 



 

 
Fig. 15. Original images and corresponding 2D-histogram. 

 

5.2.2 Experiment results and analysis 

The segmentation process for breast cancer images was implemented through a systematic and 

multi-stage pipeline, as illustrated in Fig. 16. The overall procedure is detailed as follows: 

Initially, each breast cancer histology image is input and resized to a fixed dimension of  224 × 224 

pixels to ensure uniformity across the dataset. This standardization facilitates consistent processing and 

comparison of  results. Subsequently, the resized images are converted into grayscale format, which 



 

simplifies the intensity analysis by reducing the image to a single channel while preserving essential 

structural information. 

In parallel, a non-local means (NLM) filtering technique is applied to the grayscale images. This 

denoising step is critical for mitigating the effects of  noise, thereby enhancing the quality of  the image 

data for subsequent processing. The NLM algorithm exploits the redundancy in image patches to 

achieve effective noise reduction while preserving fine details. 

The next phase involves the construction of  a two-dimensional histogram, a pivotal component in 

our multi-threshold segmentation (MTIS) approach. This histogram is generated by combining the 

original grayscale image with its corresponding NLM-filtered version. The resulting NLM-based 2D 

histogram encapsulates both the intensity information and the texture features inherent in the image, 

providing a richer representation for threshold determination. 

Following histogram construction, the threshold selection process is initiated. The MAs are 

employed to search for the optimal threshold values that maximize the chosen fitness function—

specifically, Renyi entropy. This optimization process systematically explores the solution space, 

identifying the threshold set those best partitions the image based on the combined intensity and texture 

cues. 

Once the optimal threshold values have been determined, they are applied to segment the original 

image. This segmentation process divides the image into distinct regions corresponding to different 

intensity levels, effectively delineating areas of  interest. The segmented image is then post-processed to 

generate a jet colormap representation, which visually enhances the delineation of  boundaries and 

facilitates a more intuitive interpretation of  the segmentation results. 

 

 
Fig. 16. Flowchart of  MTIS. 

 

Building on the segmentation pipeline detailed above, the following presents the experimental 

results and analysis and their visualizations. 

The performance of  the proposed SBO-based model was evaluated using three widely adopted 

metrics: PSNR, FSIM, and SSIM. The results for segmentation tasks employing 6, 12, and 18 threshold 

levels are comprehensively summarized in Table A. 9 through Table A. 11, respectively. The metrics 

were computed for each threshold configuration over 30 independent runs, and the average and 

standard deviation values were reported. These tables highlight the optimal performance values in bold 

to facilitate straightforward recognition of  the best results. 



 

The performance metrics for the segmentation tasks using 6 thresholds are further visualized in 

Fig. 17, which presents a heatmap of  the PSNR, FSIM, and SSIM scores. In this heatmap, warmer 

colors correspond to higher metric values, indicating superior segmentation quality, whereas cooler 

colors denote lower scores. A detailed analysis of  these visualizations reveals that, across all three 

metrics, the proposed SBO-based approach consistently achieves the highest scores when compared 

with other evaluated methods. 

 

 
Fig. 17. Heatmap for PSNR, FSIM, and SSIM result over 6 threshold level. 

 

In experiments conducted with 12 thresholds, Fig. 18 illustrates the convergence curve of  the 

Renyi entropy value during the iterative optimization process. Although the SBO-based method initially 

exhibits lower entropy values during the early iterations, it steadily improves and ultimately converges 

to the optimal threshold configuration at the final iteration (iteration 100). This convergence behavior 

underscores the algorithm’s capability to overcome initial suboptimality and effectively explore the 

solution space to identify the best threshold values. 



 

 
Fig. 18. Convergence curves of  the entropy value by 12 threshold level. 

 

For the segmentation tasks involving 18 thresholds, Fig. 19 compares the jet color mapped 

segmentation result for image B with its corresponding original image. The jet colormap enhances the 

visual interpretation by assigning distinct colors to regions of  similar intensity. The comparative analysis 

demonstrates that the SBO-based method identifies more optimal thresholds, producing a segmented 

image where regions with analogous intensities are more accurately grouped together. 



 

 
Fig. 19. Jet colormap segmentation result of  image B over 18 threshold level. 

 

Overall, the experimental results and accompanying visualizations provide compelling evidence of  

the superiority of  the proposed SBO-based method. Across the various threshold levels and evaluation 

metrics, the approach yields higher quantitative scores and delivers visually coherent segmentation 

outcomes, thereby reinforcing its potential utility in clinical diagnostic applications. 

6. Conclusions and Future Directions 

This paper introduces SBO, an MA inspired by human status-driven social behavior, where 

individuals seek advancement through strategic networking and resource exchange. SBO translates this 

dynamic into a computational model, balancing exploration and exploitation to navigate complex 

optimization landscapes efficiently. During exploration, agents move within a high-status circle defined 

by their own position, the most successful peer, and a high-status individual, ensuring diverse and 

effective searches. Exploitation is achieved through local refinements that enhance solution quality, 

ensuring convergence toward optimal solutions. 

The SBO's effectiveness was validated across benchmark functions from the IEEE CEC 2017 

suite, outperforming 13 state-of-the-art metaheuristics, including human-behavior-inspired algorithms, 



 

recent methods, and classical PSO and DE variants, across dimensions of  10, 30, 50, and 100. Statistical 

analyses, including the Wilcoxon signed-rank and Friedman tests, confirmed its superior global 

optimization capability and scalability. Further, a binary variant, bSBO, was developed for feature 

selection, leveraging a V-type transfer function to select minimal yet relevant feature subsets. Tested 

against 8 binary optimizers across 9 high-dimensional UCI datasets, bSBO consistently demonstrated 

optimal fitness, selecting the fewest features while maintaining high classification accuracy. SBO was 

also applied to multi-threshold image segmentation at 3 threshold levels, where it was compared with 7 

advanced metaheuristic methods on 9 breast cancer histology images from the IDC dataset, effectively 

identifying optimal segmentation thresholds and highlighting its versatility in real-world applications. 

Despite SBO’s strong performance, in line with the No Free Lunch theorem [95], no algorithm 

excels in all scenarios. Future research should explore SBO's adaptation to multi-objective optimization, 

scalability for large-scale problems, and hybridization with other computational frameworks to enhance 

its robustness and applicability. Further testing across diverse domains will provide deeper insights into 

its optimization potential and contribute to advancing heuristic optimization methodologies. 

Moreover, recent advances in dynamic multi-objective optimization, such as the non-inductive 

transfer learning approach with multi-strategy adaptive selection [91] and the cascaded fuzzy system for 

objective knowledge transfer [92], offer valuable insights for further enhancement. These approaches 

address challenges like negative transfer and rigid labeling in dynamic environments and may inspire 

future extensions of  SBO to handle time-varying optimization problems effectively. In our future work, 

we plan to investigate the integration of  such advanced techniques into SBO, aiming to further improve 

its adaptability and performance in dynamic settings. 
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Appendix 

 See Table A. 1-A. 11. 

Table A. 1. Comparative results of  SBO and state-of-the-art algorithms for 10-dimensional problems. 
Fun Item SBO TLBO PO HHO RIME ALCPSO CLPSO CGPSO MSPSO CMAES DECLS LSHADE

_cnEpSin 
SCADE SHADE 

F1 Avg 
1.0000E+

02 
2.3180E+

09 
5.7825E+

07 
2.7350E+

05 
1.1951E+

03 
8.5399E+

02 
1.0876E+

02 
5.4781E+

06 
4.7180E+

02 
1.0000E+

02 
4.4133E+

02 
1.0000E+

02 
9.4471E+

08 1.0000E+02 

 Std 
3.7899E-

11 
1.9307E+

09 
1.7239E+

08 
1.2752E+

05 
8.7649E+

02 
6.8933E+

02 
1.2166E+

01 
1.4214E+

06 
4.8450E+

02 
0.0000E

+00 
3.6559E+

02 
2.0441E-

14 
3.7498E+

08 0.0000E+00 

F2 Avg 
3.0000E

+02 
5.6759E+

03 
3.0009E+

02 
3.0148E+

02 
3.0000E+

02 
3.6480E+

02 
3.0284E+

02 
3.2021E+

02 
3.0000E+

02 
3.0000E

+02 
9.5474E+

02 
3.0000E

+02 
3.4003E+

03 3.0000E+02 

 Std 
4.4783E-

14 
3.5880E+

03 
4.5599E-

01 
8.6163E-

01 
2.7309E-

03 
2.1593E+

02 
2.1596E+

00 
6.3013E+

00 
4.4408E-

08 
0.0000E

+00 
4.1849E+

02 
3.5009E-

14 
1.1183E+

03 0.0000E+00 

F3 Avg 
4.1681E+

02 
6.8320E+

02 
4.3204E+

02 
4.2885E+

02 
4.2373E+

02 
4.1831E+

02 
4.0063E+

02 
4.0779E+

02 
4.0000E

+02 
4.3130E+

02 
4.1887E+

02 
4.2302E+

02 
4.8082E+

02 4.2927E+02 

 Std 
1.7155E+

01 
3.9742E+

02 
2.4709E+

01 
1.6903E+

01 
2.0094E+

01 
1.8927E+

01 
7.2505E-

01 
2.1031E+

00 
4.0814E-

12 
1.0612E+

01 
1.2199E+

01 
1.2929E+

01 
1.5995E+

01 1.2557E+01 

F4 Avg 
5.2103E+

02 
5.3686E+

02 
5.4090E+

02 
5.3752E+

02 
5.1081E+

02 
5.1535E+

02 
5.0523E+

02 
5.3135E+

02 
5.2759E+

02 
6.9599E+

02 
5.0828E+

02 
5.0408E

+02 
5.4742E+

02 5.0484E+02 

 Std 
1.0955E+

01 
1.2216E+

01 
2.2018E+

01 
1.5707E+

01 
3.7660E+

00 
7.0510E+

00 
1.3200E+

00 
1.3347E+

01 
8.2334E+

00 
1.1764E+

02 
1.4219E+

00 
1.8906E+

00 
6.1203E+

00 1.8427E+00 

F5 Avg 
6.0000E+

02 
6.2154E+

02 
6.0194E+

02 
6.3246E+

02 
6.0002E+

02 
6.0000E+

02 
6.0000E

+02 
6.0495E+

02 
6.0932E+

02 
6.8167E+

02 
6.0000E

+02 
6.0000E+

02 
6.1657E+

02 6.0000E+02 

 Std 
4.8843E-

03 
6.4558E+

00 
7.1750E+

00 
7.7477E+

00 
7.9383E-

03 
5.4205E-

03 
6.6759E-

14 
4.6937E+

00 
1.0207E+

01 
1.8514E+

01 
3.6566E-

14 
2.8894E-

04 
3.2689E+

00 1.8204E-05 

F6 Avg 
7.2736E+

02 
7.9128E+

02 
7.2114E+

02 
8.0159E+

02 
7.2062E+

02 
7.2288E+

02 
7.1630E+

02 
7.3992E+

02 
7.2248E+

02 
1.5829E+

03 
7.1971E+

02 
7.1338E+

02 
7.8912E+

02 7.1427E+02 

 Std 
7.2747E+

00 
3.5415E+

01 
6.5920E+

00 
3.1667E+

01 
4.9622E+

00 
4.9199E+

00 
1.3102E+

00 
6.1315E+

00 
5.0845E+

00 
4.1952E+

02 
2.1805E+

00 
1.5493E+

00 
1.3146E+

01 2.3054E+00 

F7 Avg 
8.2225E+

02 
8.3788E+

02 
8.2739E+

02 
8.4522E+

02 
8.1232E+

02 
8.1242E+

02 
8.0513E+

02 
8.3708E+

02 
8.2987E+

02 
9.8467E+

02 
8.0861E+

02 
8.0441E+

02 
8.5401E+

02 8.0444E+02 

 Std 
9.2619E+

00 
1.1309E+

01 
1.5845E+

01 
1.3262E+

01 
4.6139E+

00 
4.5775E+

00 
1.1352E+

00 
1.0167E+

01 
8.3229E+

00 
7.1960E+

01 
1.7763E+

00 
1.5596E+

00 
9.0722E+

00 1.3255E+00 

F8 Avg 
9.0158E+

02 
1.1883E+

03 
1.8315E+

03 
1.7995E+

03 
9.0004E+

02 
9.0045E+

02 
9.0000E+

02 
9.5939E+

02 
1.1690E+

03 
4.7794E+

03 
9.0000E

+02 
9.0013E+

02 
1.1973E+

03 9.0007E+02 



 

 Std 
3.0779E+

00 
1.8033E+

02 
1.4153E+

02 
2.9037E+

02 
1.1647E-

01 
6.6575E-

01 
4.3803E-

07 
1.8652E+

02 
2.5310E+

02 
1.3525E+

03 
0.0000E

+00 
2.7253E-

01 
1.3439E+

02 1.5588E-01 

F9 Avg 
1.3851E+

03 
1.9715E+

03 
1.6257E+

03 
1.8197E+

03 
1.2828E+

03 
1.4065E+

03 
1.1400E+

03 
1.9250E+

03 
1.5005E+

03 
2.6178E+

03 
1.3735E+

03 
1.0878E+

03 
2.3300E+

03 1.1061E+03 

 Std 
2.6189E+

02 
2.6708E+

02 
1.8066E+

02 
3.0548E+

02 
1.9557E+

02 
2.8974E+

02 
6.3268E

+01 
2.2613E+

02 
1.6301E+

02 
4.6360E+

02 
1.2582E+

02 
7.2997E+

01 
1.5129E+

02 8.9242E+01 

F10 Avg 
1.1083E+

03 
1.1963E+

03 
1.8307E+

03 
1.1314E+

03 
1.1079E+

03 
1.1123E+

03 
1.1025E+

03 
1.1175E+

03 
1.1127E+

03 
1.1263E+

03 
1.1032E+

03 
1.1071E+

03 
1.2089E+

03 1.1018E+03 

 Std 
4.2547E+

00 
9.5005E+

01 
2.9738E+

03 
2.0663E+

01 
4.2869E+

00 
1.2376E+

01 
1.0394E+

00 
7.7493E+

00 
7.3783E+

00 
1.5009E+

01 
1.0077E+

00 
8.0343E+

00 
3.7841E+

01 1.2827E+00 

F11 Avg 
2.0189E+

03 
1.1538E+

06 
4.0045E+

05 
4.1113E+

06 
1.8147E+

04 
2.1672E+

04 
1.8209E+

04 
1.2964E+

06 
2.6195E+

03 
1.6768E+

03 
7.1923E+

04 
1.6599E+

03 
1.4365E+

07 1.4866E+03 

 Std 
1.2392E+

03 
2.2445E+

06 
9.0075E+

05 
5.2074E+

06 
1.3042E+

04 
1.3461E+

04 
1.7372E+

04 
1.5018E+

06 
2.8892E+

03 
1.9643E+

02 
4.2183E+

04 
2.3576E+

02 
9.1844E+

06 1.6495E+02 

F12 Avg 
1.3090E+

03 
2.9516E+

03 
1.4632E+

04 
1.7880E+

04 
3.5650E+

03 
3.9140E+

03 
1.3348E+

03 
9.5724E+

03 
1.3683E+

03 
1.4794E+

03 
2.1266E+

03 
1.3679E+

03 
2.9126E+

04 1.3048E+03 

 Std 
4.9077E+

00 
2.3298E+

03 
1.2823E+

04 
2.1559E+

04 
2.5377E+

03 
2.0317E+

03 
2.7892E+

01 
6.1609E+

03 
4.4587E+

01 
1.0798E+

02 
1.1207E+

03 
1.0372E+

02 
2.0590E+

04 2.2110E+00 

F13 Avg 
1.4263E+

03 
1.4850E+

03 
3.1339E+

03 
1.7509E+

03 
1.4372E+

03 
1.5841E+

03 
1.4543E+

03 
1.4650E+

03 
1.4590E+

03 
1.5504E+

03 
1.5103E+

03 
1.4245E+

03 
1.5449E+

03 1.4078E+03 

 Std 
5.4817E+

00 
4.0451E+

01 
5.8398E+

02 
4.2267E+

02 
5.3315E+

01 
6.9207E+

02 
4.4814E+

01 
2.2583E+

01 
1.6827E+

01 
1.5352E+

02 
1.1610E+

02 
1.3122E+

01 
5.6534E+

01 8.7392E+00 

F14 Avg 
1.5073E+

03 
1.5637E+

03 
1.9624E+

03 
1.8549E+

03 
1.5225E+

03 
1.5894E+

03 
1.5453E+

03 
1.6129E+

03 
1.5224E+

03 
1.5537E+

03 
1.5728E+

03 
1.5103E+

03 
1.6910E+

03 1.5010E+03 

 Std 
8.6049E+

00 
3.1139E+

01 
2.0039E+

02 
1.9634E+

02 
1.8791E+

01 
8.5496E+

01 
8.5575E+

01 
5.9174E+

01 
1.0945E+

01 
4.2251E+

01 
4.5576E+

01 
1.3395E+

01 
5.2441E+

01 1.3910E+00 

F15 Avg 
1.6771E+

03 
1.7305E+

03 
1.9410E+

03 
1.7459E+

03 
1.6753E+

03 
1.6918E+

03 
1.6039E+

03 
1.7392E+

03 
1.6859E+

03 
1.9583E+

03 
1.6136E+

03 
1.6195E+

03 
1.6828E+

03 1.6066E+03 

 Std 
6.5089E+

01 
7.4316E+

01 
1.7173E+

02 
6.2056E+

01 
7.2370E+

01 
6.4484E+

01 
3.4275E

+00 
7.3715E+

01 
5.6257E+

01 
2.2731E+

02 
8.8343E+

00 
4.0494E+

01 
6.3896E+

01 2.1877E+01 

F16 Avg 
1.7380E+

03 
1.7482E+

03 
1.7381E+

03 
1.7500E+

03 
1.7478E+

03 
1.7548E+

03 
1.7288E+

03 
1.7492E+

03 
1.7354E+

03 
1.8871E+

03 
1.7328E+

03 
1.7248E+

03 
1.7755E+

03 1.7250E+03 

 Std 
9.2807E+

00 
1.5395E+

01 
3.5389E

+00 
1.5522E+

01 
3.6749E+

01 
3.3858E+

01 
4.8536E+

00 
9.6468E+

00 
6.2288E+

00 
1.9391E+

02 
4.4028E+

00 
6.8232E+

00 
9.9580E+

00 3.5507E+00 

F17 Avg 
1.8636E+

03 
2.5766E+

03 
7.8245E+

03 
1.4442E+

04 
6.3295E+

03 
8.5061E+

03 
2.4236E+

03 
1.1574E+

04 
1.8681E+

03 
1.8538E+

03 
4.2864E+

03 
1.8412E+

03 
2.0925E+

04 1.8250E+03 

 Std 
4.9864E+

01 
1.1615E+

03 
5.3044E+

03 
7.0133E+

03 
4.4974E+

03 
7.2177E+

03 
6.0648E+

02 
6.4248E+

03 
2.3702E+

01 
2.1465E+

01 
2.0536E+

03 
1.5729E+

01 
1.0980E+

04 1.7644E+01 

F18 Avg 
1.9027E+

03 
1.9639E+

03 
4.3548E+

03 
3.0481E+

03 
1.9050E+

03 
1.9636E+

03 
1.9137E+

03 
1.9981E+

03 
1.9144E+

03 
1.9615E+

03 
1.9274E+

03 
1.9078E+

03 
2.4347E+

03 1.9010E+03 

 Std 
1.9354E+

00 
5.5729E+

01 
3.4496E+

03 
1.7149E+

03 
2.4059E+

00 
1.2416E+

02 
1.9147E+

01 
1.0295E+

02 
7.3152E+

00 
3.9553E+

01 
9.4558E+

01 
1.6371E+

01 
4.5388E+

02 1.0705E+00 

F19 Avg 
2.0167E+

03 
2.0785E+

03 
2.0964E+

03 
2.1739E+

03 
2.0225E+

03 
2.0340E+

03 
2.0090E+

03 
2.1462E+

03 
2.1310E+

03 
2.6039E+

03 
2.0110E+

03 
2.0134E+

03 
2.1197E+

03 2.0079E+03 

 Std 
1.5761E+

01 
3.2707E+

01 
5.4794E+

01 
6.0679E+

01 
1.1842E+

01 
2.3483E+

01 
8.1163E+

00 
6.0332E+

01 
4.6628E+

01 
2.0009E+

02 
6.7090E+

00 
1.0955E+

01 
2.4363E+

01 5.4583E+00 

F20 Avg 
2.2800E

+03 
2.2854E+

03 
2.2801E+

03 
2.2811E+

03 
2.2801E+

03 
2.2800E

+03 
2.2800E

+03 
2.2874E+

03 
2.2800E+

03 
2.2800E

+03 
2.2800E

+03 
2.2800E

+03 
2.2804E+

03 2.2800E+03 

 Std 
4.0684E+

01 
2.9706E+

01 
4.0429E+

01 
3.8365E+

01 
4.0439E+

01 
4.0684E+

01 
4.0684E+

01 
2.5672E

+01 
4.0684E+

01 
4.0684E+

01 
4.0684E+

01 
4.0684E+

01 
3.9871E+

01 4.0684E+01 

F21 Avg 
2.2327E+

03 
2.2829E+

03 
2.2904E+

03 
2.2465E+

03 
2.2270E+

03 
2.2316E+

03 
2.2175E+

03 
2.2555E+

03 
2.2420E+

03 
2.3083E+

03 
2.2223E+

03 
2.2219E+

03 
2.2797E+

03 2.2216E+03 

 Std 
3.4761E+

01 
3.9109E+

01 
2.6473E+

01 
3.2342E+

01 
3.7815E+

01 
3.5065E+

01 
3.7684E+

01 
4.0256E+

01 
3.0143E+

01 
8.1809E+

01 
3.9657E+

01 
3.9879E+

01 
1.5061E+

01 3.9970E+01 

F22 Avg 
2.5000E

+03 
2.5000E

+03 
2.5260E+

03 
2.5000E

+03 
2.6665E+

03 
2.6629E+

03 
2.6443E+

03 
2.5160E+

03 
2.6571E+

03 
3.7417E+

03 
2.5469E+

03 
2.6501E+

03 
2.5071E+

03 2.6520E+03 

 Std 
0.0000E

+00 
8.4444E-

14 
6.7607E+

01 
0.0000E

+00 
9.6352E+

00 
5.0656E+

01 
2.8120E+

01 
8.7666E+

01 
1.1120E+

02 
3.6362E+

02 
7.2968E+

01 
4.4361E+

00 
3.8827E+

01 6.8170E+00 

F23 Avg 
2.6000E+

03 
2.6000E+

03 
2.6000E+

03 
2.6000E+

03 
2.7597E+

03 
2.7265E+

03 
2.5176E+

03 
2.6000E+

03 
2.5967E+

03 
2.6662E+

03 
2.5969E+

03 
2.7289E+

03 
2.6000E+

03 2.7672E+03 

 Std 
0.0000E

+00 
2.8007E-

13 
0.0000E

+00 
0.0000E

+00 
9.2116E+

01 
1.1652E+

02 
2.3710E+

01 
2.6163E-

02 
1.8257E+

01 
1.0591E+

02 
1.6742E+

01 
1.0063E+

02 
0.0000E

+00 8.7201E+01 

F24 Avg 
2.7000E

+03 
2.7000E

+03 
2.7000E

+03 
2.7000E

+03 
2.9361E+

03 
2.9322E+

03 
2.8662E+

03 
2.7001E+

03 
2.9312E+

03 
2.9360E+

03 
2.7000E+

03 
2.9260E+

03 
2.7000E

+03 2.9248E+03 

 Std 
0.0000E

+00 
2.6704E-

13 
0.0000E

+00 
0.0000E

+00 
2.5218E+

01 
2.2256E+

01 
6.8001E+

01 
2.8371E-

01 
4.7188E+

01 
1.8573E+

01 
1.0346E-

02 
2.2547E+

01 
0.0000E

+00 2.3799E+01 

F25 Avg 
2.8000E+

03 
2.8000E+

03 
2.8000E+

03 
2.8000E+

03 
3.0581E+

03 
3.1611E+

03 
2.7796E+

03 
2.8000E+

03 
2.8000E+

03 
3.4923E+

03 
2.7788E

+03 
2.9453E+

03 
2.8000E+

03 3.0323E+03 

 Std 
0.0000E

+00 
3.8697E-

13 
0.0000E

+00 
0.0000E

+00 
2.4113E+

02 
2.6157E+

02 
8.8635E+

01 
6.2322E-

03 
6.1154E-

05 
9.4207E+

02 
4.7037E+

01 
1.6037E+

02 
0.0000E

+00 2.2056E+02 

F26 Avg 
2.9000E

+03 
2.9109E+

03 
2.9324E+

03 
2.9000E

+03 
3.1469E+

03 
3.2161E+

03 
3.1336E+

03 
2.9702E+

03 
3.3521E+

03 
4.2311E+

03 
2.9549E+

03 
3.1660E+

03 
2.9869E+

03 3.1491E+03 

 Std 
0.0000E

+00 
5.9926E+

01 
1.0060E+

02 
0.0000E

+00 
3.8290E+

01 
7.2678E+

01 
1.2388E+

01 
2.0495E+

02 
1.2320E+

02 
1.2932E+

03 
1.0127E+

02 
5.5653E+

01 
1.2825E+

02 3.3855E+01 

F27 Avg 
3.0000E

+03 
3.0000E

+03 
3.0476E+

03 
3.0000E

+03 
3.1340E+

03 
3.1336E+

03 
3.1008E+

03 
3.0001E+

03 
3.1292E+

03 
3.1469E+

03 
3.0000E+

03 
3.1294E+

03 
3.0000E

+03 3.1307E+03 

 Std 
0.0000E

+00 
2.2342E-

13 
1.4572E+

02 
0.0000E

+00 
2.5453E+

01 
2.7844E+

01 
3.0353E+

01 
1.7858E-

01 
4.0294E+

01 
3.4520E+

01 
9.4064E-

03 
2.4392E+

01 
0.0000E

+00 2.6477E+01 

F28 Avg 
3.1027E+

03 
3.1040E+

03 
3.1432E+

03 
3.1000E+

03 
3.1736E+

03 
3.1862E+

03 
3.1548E+

03 
3.1693E+

03 
3.1614E+

03 
3.3139E+

03 
3.1515E+

03 
3.1444E+

03 
3.2006E+

03 3.1509E+03 

 Std 
9.9386E+

00 
2.0706E+

01 
5.6733E+

01 
0.0000E

+00 
3.6379E+

01 
3.3949E+

01 
2.0757E+

01 
5.2902E+

01 
1.9386E+

01 
1.6788E+

02 
3.0011E+

01 
8.4873E+

00 
1.7336E+

01 9.0005E+00 

F29 Avg 
3.2575E+

03 
4.7588E+

03 
3.2000E

+03 
6.1051E+

03 
1.2111E+

04 
1.1138E+

04 
5.5652E+

03 
7.6245E+

03 
3.7131E+

03 
3.3027E+

03 
9.1510E+

03 
3.3174E+

03 
4.2189E+

04 3.2729E+03 

 Std 
1.3251E+

02 
2.9276E+

03 
0.0000E

+00 
1.1146E+

04 
9.2233E+

03 
6.3386E+

03 
1.6372E+

03 
7.4466E+

03 
2.3594E+

02 
7.6152E+

01 
7.3674E+

03 
6.4934E+

01 
6.6794E+

04 5.1380E+01 

 

Table A. 2. Comparative results of  SBO and state-of-the-art algorithms for 30-dimensional problems. 
Fun Item SBO TLBO PO HHO RIME ALCPSO CLPSO CGPSO MSPSO CMAES DECLS LSHADE_

cnEpSin 
SCADE SHADE 

F1 Avg 
1.0000E+0

2 
6.9730E+1

0 
5.4132E+0

9 
1.2641E+0

7 
8.8954E+0

3 
1.2146E+0

3 
1.0632E+0

2 
1.4916E+0

8 
1.3197E+0

2 
1.0000E+0

2 
2.9118E+0

2 
1.0000E+0

2 
3.1416E+1

0 1.0000E+02 



 

 Std 
1.8199E-03 

1.7262E+1
0 

9.0158E+0
9 

2.8200E+0
6 

8.3218E+0
3 

1.6428E+0
3 

1.6036E+0
1 

1.9150E+0
7 

8.9899E+0
1 2.6389E-15 

5.7543E+0
2 4.0280E-09 

4.8259E+0
9 1.2377E-14 

F2 Avg 
3.0000E+0

2 
8.4145E+0

4 
3.0104E+0

5 
2.6005E+0

3 
3.0142E+0

2 
2.5946E+0

4 
8.5894E+0

3 
7.2357E+0

2 
3.0000E+0

2 
3.0000E+0

2 
5.5946E+0

4 
3.0000E+0

2 
6.2642E+0

4 6.5346E+03 

 Std 
7.7093E-04 

1.9921E+0
4 

9.1928E+0
4 

9.0216E+0
2 4.9980E-01 

3.2963E+0
3 

2.7869E+0
3 

7.5053E+0
1 1.4888E-05 2.1111E-14 

1.1142E+0
4 2.0163E-03 

6.7577E+0
3 1.9062E+04 

F3 Avg 
4.5650E+0

2 
1.0008E+0

4 
1.5747E+0

3 
5.7272E+0

2 
5.0591E+0

2 
5.2499E+0

2 
4.6917E+0

2 
4.7840E+0

2 
4.0000E+0

2 
4.0000E+0

2 
5.1583E+0

2 
4.1777E+0

2 
2.1808E+0

3 4.0441E+02 

 Std 
4.7534E+0

1 
3.6205E+0

3 
1.2929E+0

3 
5.1847E+0

1 
3.7418E+0

1 
4.9266E+0

1 
1.6876E+0

1 
4.2153E+0

1 6.3694E-11 2.1111E-14 
1.9116E+0

1 
4.1329E+0

1 
3.4542E+0

2 1.6265E+01 

F4 Avg 
6.4002E+0

2 
7.7126E+0

2 
6.3940E+0

2 
6.7385E+0

2 
5.7668E+0

2 
6.0657E+0

2 
5.5142E+0

2 
7.0690E+0

2 
6.3299E+0

2 
1.0567E+0

3 
6.2098E+0

2 
5.4096E+0

2 
7.9047E+0

2 5.3333E+02 

 Std 
2.8289E+0

1 
2.9699E+0

1 
5.1140E+0

1 
2.1445E+0

1 
1.5942E+0

1 
3.1805E+0

1 
1.0129E+0

1 
2.8255E+0

1 
2.1488E+0

1 
1.1072E+0

2 
1.0654E+0

1 
1.0311E+0

1 
1.7514E+0

1 8.9819E+00 

F5 Avg 
6.0011E+0

2 
6.6017E+0

2 
6.0164E+0

2 
6.5397E+0

2 
6.0035E+0

2 
6.0470E+0

2 
6.0000E+0

2 
6.5380E+0

2 
6.3909E+0

2 
6.8985E+0

2 
6.0000E+0

2 
6.0217E+0

2 
6.5647E+0

2 6.0003E+02 

 Std 
2.7603E-01 

6.6025E+0
0 

5.1274E+0
0 

3.9120E+0
0 2.4596E-01 

3.8981E+0
0 7.0018E-14 

8.1932E+0
0 

4.4595E+0
0 

1.1757E+0
1 4.7206E-14 

1.7096E+0
0 

5.7373E+0
0 3.2892E-02 

F6 Avg 
8.6048E+0

2 
1.4695E+0

3 
8.2047E+0

2 
1.3538E+0

3 
8.1050E+0

2 
8.4718E+0

2 
7.8284E+0

2 
9.3474E+0

2 
8.0322E+0

2 
3.6779E+0

3 
8.5656E+0

2 
7.8306E+0

2 
1.2896E+0

3 7.6593E+02 

 Std 
3.7928E+0

1 
9.4261E+0

1 
2.9848E+0

1 
8.2166E+0

1 
2.1921E+0

1 
3.1077E+0

1 
8.8683E+0

0 
2.1076E+0

1 
2.0392E+0

1 
1.7667E+0

3 
1.0678E+0

1 
1.5461E+0

1 
4.6646E+0

1 7.8392E+00 

F7 Avg 
9.3153E+0

2 
1.1552E+0

3 
9.1431E+0

2 
1.0760E+0

3 
8.7412E+0

2 
9.0819E+0

2 
8.4602E+0

2 
1.0587E+0

3 
1.0076E+0

3 
1.4894E+0

3 
9.2698E+0

2 
8.3834E+0

2 
1.1113E+0

3 8.3354E+02 

 Std 
4.5204E+0

1 
3.4618E+0

1 
6.4707E+0

1 
4.7361E+0

1 
1.8977E+0

1 
2.7363E+0

1 
7.9371E+0

0 
3.4210E+0

1 
2.2185E+0

1 
2.2072E+0

2 
9.6889E+0

0 
8.2085E+0

0 
2.3328E+0

1 5.7783E+00 

F8 Avg 
2.2164E+0

3 
8.3764E+0

3 
2.4426E+0

3 
7.5300E+0

3 
1.2912E+0

3 
1.7477E+0

3 
9.1720E+0

2 
8.0879E+0

3 
3.8391E+0

3 
1.6052E+0

4 
9.0000E+0

2 
1.2178E+0

3 
1.0229E+0

4 9.1501E+02 

 Std 
1.0391E+0

3 
1.7456E+0

3 
1.3901E+0

3 
8.9262E+0

2 
4.0820E+0

2 
9.1404E+0

2 
1.2722E+0

1 
1.9692E+0

3 
6.4487E+0

2 
2.4342E+0

3 1.2127E-13 
3.2298E+0

2 
8.8093E+0

2 1.5039E+01 

F9 Avg 
3.5023E+0

3 
7.5753E+0

3 
3.4687E+0

3 
4.7784E+0

3 
3.3891E+0

3 
3.9998E+0

3 
3.0670E+0

3 
5.6168E+0

3 
4.1294E+0

3 
6.0714E+0

3 
5.9795E+0

3 
2.5806E+0

3 
7.3122E+0

3 2.5711E+03 

 Std 
5.3362E+0

2 
4.0676E+0

2 
5.5135E+0

2 
7.5921E+0

2 
4.9071E+0

2 
5.7746E+0

2 
2.1730E+0

2 
5.9154E+0

2 
5.8315E+0

2 
8.2050E+0

2 
2.4385E+0

2 
2.8441E+0

2 
3.0293E+0

2 2.6919E+02 

F10 Avg 
1.1909E+0

3 
1.1139E+0

4 
1.5571E+0

3 
1.4026E+0

3 
1.2623E+0

3 
1.2400E+0

3 
1.1425E+0

3 
1.3723E+0

3 
1.2464E+0

3 
1.3586E+0

3 
1.1802E+0

3 
1.3306E+0

3 
6.6446E+0

3 1.2755E+03 

 Std 
3.0112E+0

1 
5.0521E+0

3 
1.4793E+0

3 
9.4863E+0

1 
6.5661E+0

1 
6.5160E+0

1 
1.0786E+0

1 
5.7511E+0

1 
3.6670E+0

1 
1.0352E+0

2 
1.2998E+0

1 
9.0997E+0

1 
1.3191E+0

3 5.5504E+01 

F11 Avg 
3.1764E+0

3 
1.1826E+1

0 
8.9769E+0

8 
6.5711E+0

7 
4.3847E+0

6 
1.2835E+0

4 
5.4275E+0

5 
9.1962E+0

7 
2.9859E+0

3 
2.8110E+0

3 
1.8304E+0

5 
3.1579E+0

3 
2.5742E+0

9 2.7065E+03 

 Std 
8.9153E+0

2 
6.0467E+0

9 
1.4210E+0

9 
4.5482E+0

7 
2.8984E+0

6 
2.7333E+0

4 
9.3343E+0

5 
3.4010E+0

7 
7.1704E+0

2 
3.3921E+0

2 
3.6513E+0

5 
5.6051E+0

2 
7.3259E+0

8 3.6244E+02 

F12 Avg 
1.4067E+0

3 
1.1396E+0

9 
7.8650E+0

7 
2.5057E+0

5 
3.2291E+0

3 
1.6397E+0

3 
1.3953E+0

3 
3.1034E+0

6 
2.1746E+0

3 
2.9092E+0

3 
1.5163E+0

3 
3.3043E+0

3 
1.6991E+0

8 1.5619E+03 

 Std 
6.3340E+0

1 
1.2348E+0

9 
1.5395E+0

8 
1.9887E+0

5 
2.2413E+0

3 
5.1138E+0

2 
3.0684E+0

1 
8.8106E+0

5 
3.8944E+0

2 
6.7324E+0

2 
6.5315E+0

2 
8.7164E+0

2 
6.4781E+0

7 4.5299E+02 

F13 Avg 
1.4878E+0

3 
4.7894E+0

4 
2.1343E+0

5 
4.4671E+0

4 
1.5086E+0

3 
1.5601E+0

3 
2.9364E+0

3 
3.8089E+0

4 
1.7264E+0

3 
1.8580E+0

3 
1.4970E+0

3 
1.8288E+0

3 
3.7731E+0

5 1.6677E+03 

 Std 
2.9889E+0

1 
6.6983E+0

4 
2.9692E+0

5 
3.2703E+0

4 
4.4792E+0

1 
8.8526E+0

1 
2.3327E+0

3 
2.2043E+0

4 
1.1085E+0

2 
1.6146E+0

2 
1.8225E+0

1 
2.3966E+0

2 
2.4757E+0

5 1.3801E+02 

F14 Avg 
1.5473E+0

3 
5.5519E+0

7 
9.8123E+0

6 
4.2291E+0

4 
7.9122E+0

3 
1.6371E+0

3 
1.5876E+0

3 
3.8662E+0

5 
1.6218E+0

3 
1.6037E+0

3 
1.5736E+0

3 
1.6269E+0

3 
6.2039E+0

6 1.6043E+03 

 Std 
1.7451E+0

1 
1.7710E+0

8 
2.2697E+0

7 
2.9176E+0

4 
5.9222E+0

3 
4.7768E+0

1 
3.9430E+0

1 
1.8767E+0

5 
7.4489E+0

1 
4.3677E+0

1 
2.3372E+0

1 
4.6331E+0

1 
3.1932E+0

6 5.8921E+01 

F15 Avg 
2.5266E+0

3 
3.5013E+0

3 
3.3886E+0

3 
3.0945E+0

3 
2.2813E+0

3 
2.4984E+0

3 
2.0035E+0

3 
2.8052E+0

3 
2.4821E+0

3 
2.1998E+0

3 
2.1080E+0

3 
2.0032E+0

3 
3.5188E+0

3 1.9655E+03 

 Std 
2.8264E+0

2 
3.9762E+0

2 
4.3148E+0

2 
4.0441E+0

2 
2.6377E+0

2 
2.5719E+0

2 
1.2757E+0

2 
2.7276E+0

2 
2.6201E+0

2 
4.1630E+0

2 
1.2539E+0

2 
1.8306E+0

2 
2.2375E+0

2 1.4431E+02 

F16 Avg 
2.0768E+0

3 
2.6091E+0

3 
2.7173E+0

3 
2.5267E+0

3 
1.9714E+0

3 
2.1441E+0

3 
1.9124E+0

3 
2.4444E+0

3 
2.1993E+0

3 
2.0397E+0

3 
2.0059E+0

3 
1.8859E+0

3 
2.6240E+0

3 1.8828E+03 

 Std 
1.6543E+0

2 
2.9529E+0

2 
2.2492E+0

2 
2.8069E+0

2 
1.1455E+0

2 
1.9289E+0

2 
5.3183E+0

1 
2.4299E+0

2 
1.8893E+0

2 
2.5919E+0

2 
5.1629E+0

1 
1.0094E+0

2 
1.7694E+0

2 8.8645E+01 

F17 Avg 
7.1525E+0

3 
1.4176E+0

6 
1.8661E+0

6 
1.1573E+0

6 
1.2588E+0

5 
2.4391E+0

5 
1.6592E+0

5 
1.3058E+0

5 
1.9276E+0

3 
1.9028E+0

3 
5.0295E+0

5 
2.0421E+0

3 
2.2594E+0

6 1.9670E+03 

 Std 
5.5198E+0

3 
1.3016E+0

6 
1.6059E+0

6 
8.5322E+0

5 
8.9149E+0

4 
2.8737E+0

5 
1.6127E+0

5 
5.7837E+0

4 
3.2617E+0

1 
3.5860E+0

1 
2.8465E+0

5 
7.5608E+0

1 
1.2804E+0

6 4.8707E+01 

F18 Avg 
1.9705E+0

3 
6.8173E+0

6 
9.8531E+0

6 
1.3288E+0

5 
6.6571E+0

3 
9.1610E+0

3 
1.9890E+0

3 
4.1638E+0

5 
2.0499E+0

3 
2.1624E+0

3 
1.0681E+0

4 
2.0871E+0

3 
1.6623E+0

7 2.0417E+03 

 Std 
7.5429E+0

1 
2.0003E+0

7 
8.5017E+0

6 
1.1607E+0

5 
4.3347E+0

3 
7.8580E+0

3 
1.1823E+0

2 
3.3603E+0

5 
9.1549E+0

1 
8.7045E+0

1 
7.0433E+0

3 
7.7745E+0

1 
1.0214E+0

7 6.4838E+01 

F19 Avg 
2.3791E+0

3 
2.6841E+0

3 
2.6273E+0

3 
2.8104E+0

3 
2.3279E+0

3 
2.3650E+0

3 
2.2188E+0

3 
2.7045E+0

3 
2.5210E+0

3 
3.3770E+0

3 
2.2551E+0

3 
2.1827E+0

3 
2.8949E+0

3 2.1937E+03 

 Std 
1.4165E+0

2 
1.5447E+0

2 
2.7121E+0

2 
2.3149E+0

2 
1.2648E+0

2 
1.4221E+0

2 
6.3134E+0

1 
1.6089E+0

2 
9.4536E+0

1 
3.4220E+0

2 
4.9660E+0

1 
7.8172E+0

1 
8.4121E+0

1 7.4650E+01 

F20 Avg 
2.1690E+0

3 
1.0596E+0

4 
2.4370E+0

3 
2.2483E+0

3 
2.1958E+0

3 
2.2210E+0

3 
2.1761E+0

3 
2.1819E+0

3 
2.1000E+0

3 
2.1091E+0

3 
2.1994E+0

3 
2.1229E+0

3 
4.6531E+0

3 2.1139E+03 

 Std 
1.9887E+0

1 
2.9121E+0

3 
4.3143E+0

2 
3.9870E+0

1 
3.2846E+0

1 
3.7043E+0

1 
1.5385E+0

1 
4.2991E+0

1 3.4394E-09 
2.6654E+0

1 
2.1211E+0

1 
3.6543E+0

1 
5.8097E+0

2 3.1616E+01 

F21 Avg 
2.3665E+0

3 
2.5162E+0

3 
2.3179E+0

3 
2.4172E+0

3 
2.2832E+0

3 
2.3045E+0

3 
2.2541E+0

3 
2.4572E+0

3 
2.3866E+0

3 
2.7791E+0

3 
2.3278E+0

3 
2.2456E+0

3 
2.5230E+0

3 2.2330E+03 

 Std 
4.6298E+0

1 
3.6347E+0

1 
6.7431E+0

1 
2.3077E+0

1 
2.6300E+0

1 
2.2998E+0

1 
7.2017E+0

0 
3.2768E+0

1 
2.4852E+0

1 
1.6055E+0

2 
9.0342E+0

0 
1.1256E+0

1 
1.9196E+0

1 8.9501E+00 

F22 Avg 
2.5000E+0

3 
2.5000E+0

3 
2.8094E+0

3 
2.5000E+0

3 
2.8787E+0

3 
3.0299E+0

3 
2.8444E+0

3 
2.5000E+0

3 
3.7574E+0

3 
5.4556E+0

3 
2.5265E+0

3 
2.8908E+0

3 
3.1030E+0

3 2.8280E+03 

 Std 
0.0000E+0

0 1.4626E-13 
5.0664E+0

2 
0.0000E+0

0 
2.6972E+0

1 
1.4404E+0

2 
1.0291E+0

1 1.6155E-04 
3.2867E+0

2 
6.2142E+0

2 
1.0095E+0

2 
4.8571E+0

1 
3.4060E+0

2 1.0064E+01 

F23 Avg 
2.6000E+0

3 
2.6000E+0

3 
2.6000E+0

3 
2.6000E+0

3 
3.2845E+0

3 
3.2055E+0

3 
2.6134E+0

3 
2.6000E+0

3 
2.6013E+0

3 
2.6500E+0

3 
2.6000E+0

3 
2.8445E+0

3 
2.6000E+0

3 3.0524E+03 

 Std 
0.0000E+0

0 2.5333E-13 
0.0000E+0

0 
0.0000E+0

0 
2.7313E+0

2 
4.1084E+0

2 
1.8613E+0

1 3.6916E-04 
2.5842E+0

0 
5.0855E+0

1 2.1726E-04 
3.5513E+0

2 
0.0000E+0

0 3.5713E+02 

F24 Avg 
2.7000E+0

3 
2.7000E+0

3 
2.7000E+0

3 
2.7000E+0

3 
2.9728E+0

3 
2.9844E+0

3 
2.9089E+0

3 
2.7000E+0

3 
2.8400E+0

3 
2.9133E+0

3 
2.7000E+0

3 
3.0007E+0

3 
2.7000E+0

3 2.9317E+03 

 Std 
0.0000E+0

0 3.3778E-13 
0.0000E+0

0 
0.0000E+0

0 
5.7451E+0

1 
5.8863E+0

1 
9.6945E+0

0 4.9612E-03 
1.5497E+0

2 
2.0717E+0

1 2.6330E-03 
6.5183E+0

1 
0.0000E+0

0 3.4419E+01 

F25 Avg 
2.8000E+0

3 
2.8000E+0

3 
2.8000E+0

3 
2.8000E+0

3 
5.2331E+0

3 
5.4404E+0

3 
3.8306E+0

3 
2.8000E+0

3 
2.8000E+0

3 
3.9018E+0

3 
2.8000E+0

3 
3.7277E+0

3 
2.8000E+0

3 4.6270E+03 

 Std 
0.0000E+0

0 3.6808E-13 
0.0000E+0

0 
0.0000E+0

0 
7.2528E+0

2 
1.0849E+0

3 
7.3853E+0

2 6.0344E-03 1.2282E-07 
9.6316E+0

2 4.3871E-03 
1.1230E+0

3 
0.0000E+0

0 6.0801E+02 

F26 Avg 
2.9000E+0

3 
2.9000E+0

3 
2.9000E+0

3 
2.9000E+0

3 
3.5770E+0

3 
3.8481E+0

3 
3.5039E+0

3 
3.0541E+0

3 
4.1984E+0

3 
4.9790E+0

3 
3.0282E+0

3 
3.6671E+0

3 
4.0586E+0

3 3.5672E+03 

 Std 
0.0000E+0

0 1.6889E-13 
0.0000E+0

0 
0.0000E+0

0 
5.6800E+0

1 
1.8037E+0

2 
2.7236E+0

1 
5.9219E+0

2 
4.7690E+0

2 
2.0492E+0

3 
2.3631E+0

2 
1.0433E+0

2 
8.3173E+0

1 8.4572E+01 

F27 Avg 
3.0000E+0

3 
3.0000E+0

3 
3.0000E+0

3 
3.0000E+0

3 
3.4149E+0

3 
3.4891E+0

3 
3.2773E+0

3 
3.0000E+0

3 
3.1974E+0

3 
3.2315E+0

3 
3.0000E+0

3 
3.2536E+0

3 
3.0000E+0

3 3.2822E+03 

 Std 
0.0000E+0

0 3.0447E-13 
0.0000E+0

0 
0.0000E+0

0 
4.8397E+0

2 
6.1499E+0

2 
2.3695E+0

1 4.1480E-03 
7.9251E+0

1 
5.3376E+0

1 3.5126E-03 
4.8528E+0

1 
0.0000E+0

0 5.6624E+01 

F28 Avg 
3.1000E+0

3 
3.1000E+0

3 
3.1000E+0

3 
3.1000E+0

3 
3.5757E+0

3 
3.7346E+0

3 
3.3833E+0

3 
3.1000E+0

3 
3.7373E+0

3 
3.7594E+0

3 
3.1127E+0

3 
3.3894E+0

3 
3.1000E+0

3 3.3453E+03 

 Std 
0.0000E+0

0 3.0447E-13 
0.0000E+0

0 
0.0000E+0

0 
1.2673E+0

2 
1.8930E+0

2 
6.0051E+0

1 1.3188E-01 
1.7768E+0

2 
3.3258E+0

2 
6.9457E+0

1 
1.0169E+0

2 
0.0000E+0

0 6.6893E+01 

F29 Avg 
3.2000E+0

3 
3.2000E+0

3 
3.2000E+0

3 
3.2000E+0

3 
3.2263E+0

4 
6.9484E+0

4 
1.4169E+0

4 
4.4562E+0

3 
7.4549E+0

3 
3.9941E+0

3 
4.2962E+0

3 
4.4617E+0

3 
2.2543E+0

5 4.1723E+03 



 

 Std 
0.0000E+0

0 3.5827E-13 
0.0000E+0

0 
0.0000E+0

0 
1.9568E+0

4 
9.4634E+0

4 
6.8569E+0

3 
1.3368E+0

3 
2.3447E+0

3 
1.0203E+0

2 
8.1422E+0

2 
3.2609E+0

2 
5.3451E+0

5 2.1504E+02 

 

Table A. 3. Comparative results of  SBO and state-of-the-art algorithms for 50-dimensional problems. 
Fun Item SBO TLBO PO HHO RIME ALCPSO CLPSO CGPSO MSPSO CMAES DECLS LSHADE_

cnEpSin 
SCADE SHADE 

F1 Avg 
5.3337E+0

3 
1.3720E+1

1 
7.2208E+0

9 
4.6409E+0

7 
2.0616E+0

4 
1.3623E+0

4 
1.7631E+0

2 
3.9907E+0

8 
1.0795E+0

2 
1.0000E+0

2 
9.2440E+0

3 
9.0874E+0

3 
8.0990E+1

0 1.0000E+02 

 Std 
7.8639E+0

3 
1.5328E+1

0 
1.7189E+1

0 
6.8229E+0

6 
1.7254E+0

4 
1.5724E+0

4 
1.9847E+0

2 
3.0090E+0

7 
2.8075E+0

1 
0.0000E+0

0 
1.0126E+0

4 
1.1700E+0

4 
7.7828E+0

9 9.0749E-10 

F2 Avg 
3.0042E+0

2 
1.6306E+0

5 
6.6517E+0

5 
6.4208E+0

3 
3.2774E+0

2 
6.5230E+0

4 
3.0750E+0

4 
1.7743E+0

3 
3.0000E+0

2 
3.0000E+0

2 
1.4798E+0

5 
3.8424E+0

2 
1.2596E+0

5 6.6300E+03 

 Std 
8.5015E-01 

3.2009E+0
4 

7.7313E+0
4 

1.5972E+0
3 

1.0167E+0
1 

8.5782E+0
3 

5.3501E+0
3 

2.3486E+0
2 2.4886E-05 

0.0000E+0
0 

2.1692E+0
4 

1.2632E+0
2 

9.6513E+0
3 3.3027E+04 

F3 Avg 
5.1506E+0

2 
3.3472E+0

4 
1.9292E+0

3 
6.1150E+0

2 
5.1993E+0

2 
5.6193E+0

2 
4.9395E+0

2 
5.5324E+0

2 
4.0040E+0

2 
4.2325E+0

2 
4.9777E+0

2 
4.9561E+0

2 
1.6285E+0

4 4.3006E+02 

 Std 
4.0595E+0

1 
8.1912E+0

3 
3.0946E+0

3 
6.2209E+0

1 
3.9402E+0

1 
5.2681E+0

1 
9.5030E+0

0 
4.6654E+0

1 
1.2164E+0

0 
4.2180E+0

1 
1.9436E+0

0 
3.6735E+0

1 
2.4961E+0

3 3.6258E+01 

F4 Avg 
7.9268E+0

2 
1.1064E+0

3 
6.6209E+0

2 
8.8155E+0

2 
6.7251E+0

2 
7.4024E+0

2 
6.2231E+0

2 
9.6256E+0

2 
7.8631E+0

2 
1.5497E+0

3 
7.9985E+0

2 
6.1363E+0

2 
1.0995E+0

3 5.7910E+02 

 Std 
3.0321E+0

1 
3.9035E+0

1 
4.7480E+0

1 
3.8651E+0

1 
2.5037E+0

1 
5.9677E+0

1 
1.5609E+0

1 
3.2545E+0

1 
4.0156E+0

1 
2.0393E+0

2 
1.6976E+0

1 
2.4032E+0

1 
2.8220E+0

1 1.7495E+01 

F5 Avg 
6.0014E+0

2 
6.7069E+0

2 
6.0187E+0

2 
6.5663E+0

2 
6.0179E+0

2 
6.1544E+0

2 
6.0000E+0

2 
6.6029E+0

2 
6.4229E+0

2 
6.9100E+0

2 
6.0000E+0

2 
6.0283E+0

2 
6.7054E+0

2 6.0034E+02 

 Std 
1.7144E-01 

5.7335E+0
0 

1.3037E+0
0 

4.0477E+0
0 

1.1035E+0
0 

8.7478E+0
0 1.2841E-13 

1.1357E+0
1 

4.3359E+0
0 

8.4898E+0
0 1.2127E-13 

2.6434E+0
0 

5.2515E+0
0 2.9939E-01 

F6 Avg 
1.1181E+0

3 
2.3467E+0

3 
9.6110E+0

2 
2.0539E+0

3 
9.1839E+0

2 
1.0450E+0

3 
8.7746E+0

2 
1.1637E+0

3 
9.0695E+0

2 
7.5919E+0

3 
1.0595E+0

3 
9.9466E+0

2 
2.0503E+0

3 8.4815E+02 

 Std 
7.0208E+0

1 
1.4133E+0

2 
2.7040E+0

1 
1.8665E+0

2 
4.0109E+0

1 
6.9325E+0

1 
1.6020E+0

1 
4.6406E+0

1 
2.8236E+0

1 
1.6799E+0

3 
2.1226E+0

1 
5.4229E+0

1 
5.7663E+0

1 1.8155E+01 

F7 Avg 
1.1795E+0

3 
1.5325E+0

3 
1.0307E+0

3 
1.2832E+0

3 
9.7679E+0

2 
1.0385E+0

3 
9.1649E+0

2 
1.3423E+0

3 
1.1963E+0

3 
2.1711E+0

3 
1.1041E+0

3 
9.2518E+0

2 
1.4856E+0

3 8.7693E+02 

 Std 
6.8439E+0

1 
5.2156E+0

1 
1.5075E+0

2 
4.4533E+0

1 
4.1018E+0

1 
7.3796E+0

1 
1.3272E+0

1 
5.7876E+0

1 
3.4712E+0

1 
3.0609E+0

2 
1.5496E+0

1 
2.9959E+0

1 
2.9972E+0

1 1.7237E+01 

F8 Avg 
6.4988E+0

3 
2.1563E+0

4 
3.6107E+0

3 
1.4361E+0

4 
3.9053E+0

3 
4.5071E+0

3 
1.1676E+0

3 
1.9614E+0

4 
9.3153E+0

3 
2.8854E+0

4 
9.0000E+0

2 
2.7526E+0

3 
2.5216E+0

4 1.2063E+03 

 Std 
2.1136E+0

3 
2.3348E+0

3 
2.3558E+0

3 
1.2203E+0

3 
2.5182E+0

3 
2.5415E+0

3 
1.3092E+0

2 
3.7327E+0

3 
1.2819E+0

3 
5.0328E+0

3 2.8087E-13 
9.1305E+0

2 
1.9016E+0

3 2.0023E+02 

F9 Avg 
6.3003E+0

3 
1.3443E+0

4 
5.9507E+0

3 
8.3651E+0

3 
6.2759E+0

3 
7.3045E+0

3 
5.5603E+0

3 
1.0291E+0

4 
6.7516E+0

3 
9.2356E+0

3 
1.2135E+0

4 
4.6503E+0

3 
1.3420E+0

4 4.7299E+03 

 Std 
6.4601E+0

2 
6.0027E+0

2 
6.9294E+0

2 
1.0422E+0

3 
8.2977E+0

2 
1.0624E+0

3 
3.3294E+0

2 
1.0932E+0

3 
7.3407E+0

2 
1.1211E+0

3 
3.8357E+0

2 
3.9128E+0

2 
4.0941E+0

2 3.4774E+02 

F10 Avg 
1.2489E+0

3 
5.3022E+0

4 
1.1602E+0

4 
1.6576E+0

3 
1.4606E+0

3 
1.4020E+0

3 
1.2253E+0

3 
1.7046E+0

3 
1.3794E+0

3 
1.6028E+0

3 
1.3575E+0

3 
1.5645E+0

3 
2.7599E+0

4 1.5147E+03 

 Std 
4.3412E+0

1 
2.1788E+0

4 
1.7004E+0

4 
1.0912E+0

2 
9.6636E+0

1 
7.6906E+0

1 
2.5155E+0

1 
9.9121E+0

1 
8.0874E+0

1 
1.5363E+0

2 
3.4530E+0

1 
1.8123E+0

2 
5.8676E+0

3 1.2887E+02 

F11 Avg 
4.2039E+0

3 
2.9822E+1

0 
4.7442E+0

9 
2.5236E+0

7 
3.7732E+0

6 
2.3677E+0

4 
1.2563E+0

4 
1.3721E+0

8 
3.8545E+0

3 
3.8680E+0

3 
3.2879E+0

5 
4.0279E+0

3 
1.1121E+1

0 3.8101E+03 

 Std 
5.0380E+0

2 
1.0170E+1

0 
4.6253E+0

9 
9.7639E+0

6 
2.6558E+0

6 
8.7932E+0

4 
8.8844E+0

3 
5.1315E+0

7 
7.2093E+0

2 
5.6847E+0

2 
1.4606E+0

5 
7.1543E+0

2 
1.9530E+0

9 4.7769E+02 

F12 Avg 
7.3130E+0

3 
1.0977E+1

0 
1.1939E+0

9 
1.2047E+0

6 
4.3008E+0

4 
5.3480E+0

4 
4.4754E+0

3 
1.9557E+0

7 
3.3407E+0

3 
4.0136E+0

3 
3.1426E+0

4 
4.7212E+0

3 
2.2371E+0

9 2.5828E+03 

 Std 
8.4789E+0

3 
4.2304E+0

9 
1.1768E+0

9 
3.5244E+0

5 
3.6854E+0

4 
4.7436E+0

4 
3.5050E+0

3 
3.7453E+0

6 
5.7888E+0

2 
8.3722E+0

2 
1.1112E+0

4 
7.8013E+0

2 
5.4767E+0

8 6.0875E+02 

F13 Avg 
1.5349E+0

3 
3.2188E+0

6 
6.6336E+0

5 
1.2740E+0

5 
1.5543E+0

3 
1.6573E+0

3 
1.7451E+0

3 
1.0763E+0

5 
1.7234E+0

3 
1.8770E+0

3 
1.8110E+0

3 
1.9119E+0

3 
2.9635E+0

6 1.8328E+03 

 Std 
4.3805E+0

1 
4.3506E+0

6 
9.5845E+0

5 
5.3856E+0

4 
3.1429E+0

1 
1.2674E+0

2 
2.5720E+0

2 
4.9074E+0

4 
6.9344E+0

1 
1.0674E+0

2 
1.8797E+0

2 
1.5261E+0

2 
8.2972E+0

5 1.3193E+02 

F14 Avg 
1.7398E+0

3 
2.5297E+0

9 
4.6439E+0

8 
3.1490E+0

5 
4.8237E+0

3 
4.3986E+0

3 
1.6956E+0

3 
4.4796E+0

6 
1.9176E+0

3 
1.8143E+0

3 
6.9309E+0

3 
1.9044E+0

3 
3.6269E+0

8 1.8024E+03 

 Std 
2.6522E+0

2 
1.9645E+0

9 
4.5469E+0

8 
1.3399E+0

5 
2.5774E+0

3 
2.3317E+0

3 
7.3244E+0

1 
1.4005E+0

6 
1.7222E+0

2 
1.0613E+0

2 
3.4505E+0

3 
1.1959E+0

2 
1.6341E+0

8 1.0251E+02 

F15 Avg 
3.1085E+0

3 
5.9515E+0

3 
5.0653E+0

3 
4.2059E+0

3 
2.9673E+0

3 
3.0841E+0

3 
2.5931E+0

3 
4.1066E+0

3 
3.1731E+0

3 
2.6716E+0

3 
3.2045E+0

3 
2.4477E+0

3 
5.9048E+0

3 2.5851E+03 

 Std 
4.4365E+0

2 
5.8499E+0

2 
9.9924E+0

2 
5.6877E+0

2 
3.3666E+0

2 
3.6776E+0

2 
1.8099E+0

2 
3.6830E+0

2 
3.9386E+0

2 
5.4632E+0

2 
1.8229E+0

2 
1.9051E+0

2 
3.2873E+0

2 2.5335E+02 

F16 Avg 
2.8465E+0

3 
3.9804E+0

3 
3.8552E+0

3 
3.2990E+0

3 
2.5199E+0

3 
2.8513E+0

3 
2.5183E+0

3 
3.1241E+0

3 
2.7323E+0

3 
2.4664E+0

3 
3.0380E+0

3 
2.2459E+0

3 
4.0033E+0

3 2.3841E+03 

 Std 
2.8460E+0

2 
6.4956E+0

2 
2.8422E+0

2 
3.5102E+0

2 
2.4066E+0

2 
3.3037E+0

2 
1.4369E+0

2 
2.8341E+0

2 
2.9987E+0

2 
2.6732E+0

2 
1.6048E+0

2 
1.6201E+0

2 
2.0782E+0

2 1.3703E+02 

F17 Avg 
2.8673E+0

4 
1.7096E+0

7 
1.5605E+0

7 
1.6443E+0

6 
5.3686E+0

5 
1.4011E+0

6 
9.2407E+0

5 
8.2660E+0

5 
1.9409E+0

3 
1.9496E+0

3 
3.4446E+0

6 
2.2984E+0

3 
1.5917E+0

7 2.2212E+03 

 Std 
2.3879E+0

4 
1.3442E+0

7 
1.0593E+0

7 
9.6473E+0

5 
3.1680E+0

5 
9.4157E+0

5 
4.8947E+0

5 
4.5048E+0

5 
5.1366E+0

1 
5.3000E+0

1 
1.2373E+0

6 
2.5972E+0

2 
6.4196E+0

6 2.5568E+02 

F18 Avg 
1.0287E+0

4 
1.6379E+0

9 
5.4639E+0

8 
1.3100E+0

6 
1.2289E+0

4 
1.4636E+0

4 
2.0345E+0

3 
5.8521E+0

6 
2.4218E+0

3 
2.3053E+0

3 
1.6367E+0

4 
2.4803E+0

3 
5.2472E+0

8 2.1956E+03 

 Std 
9.7059E+0

3 
1.1598E+0

9 
2.8900E+0

8 
1.5074E+0

6 
1.3453E+0

4 
1.4861E+0

4 
8.1590E+0

1 
2.5359E+0

6 
3.3739E+0

2 
1.3164E+0

2 
1.1081E+0

4 
3.2008E+0

2 
2.3568E+0

8 9.9529E+01 

F19 Avg 
2.8925E+0

3 
3.3112E+0

3 
3.2355E+0

3 
3.3859E+0

3 
2.6569E+0

3 
2.8140E+0

3 
2.5612E+0

3 
3.2334E+0

3 
2.9438E+0

3 
4.0838E+0

3 
3.0718E+0

3 
2.4352E+0

3 
3.7371E+0

3 2.4862E+03 

 Std 
3.0447E+0

2 
2.4920E+0

2 
1.9346E+0

2 
2.5556E+0

2 
2.2952E+0

2 
2.3210E+0

2 
8.5904E+0

1 
2.7738E+0

2 
1.3943E+0

2 
4.4355E+0

2 
1.1087E+0

2 
1.7703E+0

2 
1.6293E+0

2 1.1934E+02 

F20 Avg 
2.2196E+0

3 
3.1969E+0

4 
3.3990E+0

3 
2.3251E+0

3 
2.2385E+0

3 
2.3378E+0

3 
2.2294E+0

3 
2.2740E+0

3 
2.1000E+0

3 
2.1494E+0

3 
2.2187E+0

3 
2.1835E+0

3 
1.5589E+0

4 2.1484E+03 

 Std 
3.4800E+0

1 
6.7939E+0

3 
2.7058E+0

3 
4.8694E+0

1 
4.2773E+0

1 
6.8563E+0

1 
2.3491E+0

1 
5.6504E+0

1 1.6263E-09 
4.2675E+0

1 
1.6890E+0

1 
5.1689E+0

1 
2.0809E+0

3 4.0704E+01 

F21 Avg 
2.5718E+0

3 
2.8478E+0

3 
2.4143E+0

3 
2.6089E+0

3 
2.3865E+0

3 
2.4401E+0

3 
2.3648E+0

3 
2.6934E+0

3 
2.5442E+0

3 
3.2429E+0

3 
2.5253E+0

3 
2.3244E+0

3 
2.8470E+0

3 2.2884E+03 

 Std 
4.2904E+0

1 
4.1450E+0

1 
1.1460E+0

2 
2.8907E+0

1 
4.6296E+0

1 
7.3627E+0

1 
2.3040E+0

1 
3.4826E+0

1 
2.9108E+0

1 
1.9214E+0

2 
1.6554E+0

1 
2.6255E+0

1 
2.3837E+0

1 2.3367E+01 

F22 Avg 
2.5000E+0

3 
2.5000E+0

3 
4.5638E+0

3 
2.5000E+0

3 
3.2204E+0

3 
3.7725E+0

3 
3.1603E+0

3 
2.5000E+0

3 
5.4284E+0

3 
7.6265E+0

3 
2.5534E+0

3 
3.4568E+0

3 
4.2672E+0

3 3.1231E+03 

 Std 
1.8501E-12 1.0342E-12 

1.8250E+0
3 1.8501E-12 

4.2793E+0
1 

3.0464E+0
2 

2.2436E+0
1 5.0480E-05 

4.8573E+0
2 

7.1905E+0
2 

2.0328E+0
2 

1.8345E+0
2 

7.1985E+0
2 3.5838E+01 

F23 Avg 
2.6000E+0

3 
2.6000E+0

3 
2.6000E+0

3 
2.6000E+0

3 
3.8242E+0

3 
3.6454E+0

3 
2.9094E+0

3 
2.6000E+0

3 
2.6000E+0

3 
2.6567E+0

3 
2.6000E+0

3 
2.6888E+0

3 
2.6000E+0

3 3.4765E+03 

 Std 
0.0000E+0

0 3.6808E-13 
0.0000E+0

0 
0.0000E+0

0 
7.4432E+0

1 
7.0984E+0

2 
3.7936E+0

2 2.2141E-04 1.9683E-08 
5.0401E+0

1 2.3027E-04 
3.3576E+0

2 
0.0000E+0

0 4.3926E+02 

F24 Avg 
2.7000E+0

3 
2.7000E+0

3 
2.7000E+0

3 
2.7000E+0

3 
3.0496E+0

3 
3.0681E+0

3 
2.9924E+0

3 
2.7000E+0

3 
3.0149E+0

3 
2.9824E+0

3 
2.7000E+0

3 
3.0987E+0

3 
2.7000E+0

3 3.0219E+03 

 Std 
0.0000E+0

0 3.4817E-13 
0.0000E+0

0 
0.0000E+0

0 
2.6706E+0

1 
2.9288E+0

1 
2.4351E+0

1 4.9342E-03 
3.4119E+0

1 
4.5754E+0

1 3.5319E-03 
4.4846E+0

1 
0.0000E+0

0 3.7370E+01 

F25 Avg 
2.8000E+0

3 
2.8000E+0

3 
2.8000E+0

3 
2.8000E+0

3 
7.2666E+0

3 
7.7809E+0

3 
5.8511E+0

3 
2.8000E+0

3 
2.8000E+0

3 
3.7332E+0

3 
2.8000E+0

3 
4.4532E+0

3 
2.8000E+0

3 4.2607E+03 

 Std 
0.0000E+0

0 2.9252E-13 
0.0000E+0

0 
0.0000E+0

0 
1.8174E+0

3 
2.1182E+0

3 
1.6336E+0

3 2.3720E-03 1.9973E-07 
1.5798E+0

3 1.8034E-03 
2.0912E+0

3 
0.0000E+0

0 1.9571E+03 

F26 Avg 
2.9000E+0

3 
2.9000E+0

3 
2.9788E+0

3 
2.9000E+0

3 
4.0002E+0

3 
4.6064E+0

3 
3.8916E+0

3 
2.9000E+0

3 
5.2352E+0

3 
9.3477E+0

3 
2.9949E+0

3 
4.4649E+0

3 
5.8432E+0

3 3.8728E+03 



 

 Std 
1.3876E-12 9.9916E-13 

4.3165E+0
2 1.3876E-12 

1.4371E+0
2 

3.3625E+0
2 

7.6378E+0
1 1.2950E-01 

1.4900E+0
3 

4.4114E+0
3 

2.4608E+0
2 

2.7621E+0
2 

5.3745E+0
2 1.2830E+02 

F27 Avg 
3.0000E+0

3 
3.0000E+0

3 
3.0000E+0

3 
3.0000E+0

3 
3.3464E+0

3 
3.4414E+0

3 
3.3679E+0

3 
3.0000E+0

3 
3.1891E+0

3 
3.2358E+0

3 
3.0000E+0

3 
3.2921E+0

3 
3.0000E+0

3 3.3003E+03 

 Std 
0.0000E+0

0 3.3778E-13 
0.0000E+0

0 
0.0000E+0

0 
4.2663E+0

1 
6.9899E+0

1 
2.3347E+0

1 6.9549E-03 
5.2441E+0

1 
4.5106E+0

1 4.4851E-03 
4.9490E+0

1 
0.0000E+0

0 6.5014E+01 

F28 Avg 
3.1000E+0

3 
3.1000E+0

3 
3.1000E+0

3 
3.1000E+0

3 
4.3610E+0

3 
4.7293E+0

3 
3.9723E+0

3 
3.1000E+0

3 
4.4364E+0

3 
4.2974E+0

3 
3.1000E+0

3 
4.1947E+0

3 
3.1000E+0

3 3.9197E+03 

 Std 
0.0000E+0

0 2.9252E-13 
0.0000E+0

0 
0.0000E+0

0 
3.0739E+0

2 
3.1078E+0

2 
1.7431E+0

2 4.7947E-03 
2.6279E+0

2 
2.6640E+0

2 4.6536E-03 
2.8705E+0

2 
0.0000E+0

0 1.9920E+02 

F29 Avg 
3.2000E+0

3 
3.2000E+0

3 
3.2000E+0

3 
3.2000E+0

3 
3.5429E+0

5 
5.1812E+0

5 
5.8531E+0

4 
3.2938E+0

3 
1.3928E+0

4 
8.9110E+0

3 
3.2480E+0

3 
1.6486E+0

4 
3.2000E+0

3 1.2791E+04 

 Std 
0.0000E+0

0 3.3778E-13 
0.0000E+0

0 
0.0000E+0

0 
2.1016E+0

5 
1.4591E+0

6 
2.2190E+0

4 
9.0034E+0

1 
2.8249E+0

3 
3.4534E+0

2 
4.3069E+0

1 
2.0933E+0

4 
0.0000E+0

0 1.2362E+04 

 

Table A. 4. Comparative results of  SBO and state-of-the-art algorithms for 100-dimensional problems. 
Fun Item SBO TLBO PO HHO RIME ALCPSO CLPSO CGPSO MSPSO CMAES DECLS LSHADE_

cnEpSin 
SCADE SHADE 

F1 Avg 
2.7104E+0

4 
2.8770E+1

1 
2.1216E+0

7 
2.5321E+0

8 
7.4742E+0

4 
5.5782E+0

4 
2.1324E+0

3 
1.4152E+0

9 
1.0052E+0

2 
1.0000E+0

2 
2.3705E+0

4 
4.2444E+0

4 
2.1524E+1

1 1.0000E+02 

 Std 
2.1280E+0

4 
1.4017E+1

0 
1.1064E+0

8 
3.1458E+0

7 
3.8775E+0

4 
1.0270E+0

5 
2.5735E+0

3 
8.0052E+0

7 2.0354E-01 1.4454E-14 
2.2266E+0

4 
3.3082E+0

4 
1.1810E+1

0 1.2771E-03 

F2 Avg 
3.8455E+0

2 
4.0557E+0

5 
1.8387E+0

6 
7.0640E+0

4 
4.3553E+0

3 
2.5258E+0

5 
1.7507E+0

5 
2.9250E+0

4 
3.0001E+0

2 
3.0000E+0

2 
5.3812E+0

5 
8.6061E+0

3 
3.2479E+0

5 1.7683E+04 

 Std 
3.9167E+0

1 
6.1282E+0

4 
3.6975E+0

5 
1.2061E+0

4 
1.1494E+0

3 
2.7333E+0

4 
1.7413E+0

4 
9.8252E+0

3 1.9164E-02 6.5919E-14 
4.1689E+0

4 
1.5642E+0

4 
2.0514E+0

4 9.3553E+04 

F3 Avg 
6.8817E+0

2 
8.3680E+0

4 
2.7795E+0

3 
8.8215E+0

2 
6.6669E+0

2 
8.8267E+0

2 
6.1638E+0

2 
7.8935E+0

2 
4.0133E+0

2 
5.2801E+0

2 
5.8462E+0

2 
6.0072E+0

2 
4.4915E+0

4 5.7237E+02 

 Std 
5.3657E+0

1 
1.4151E+0

4 
7.2871E+0

3 
6.7062E+0

1 
5.2589E+0

1 
1.1438E+0

2 
3.1880E+0

1 
7.6256E+0

1 
1.9114E+0

0 
8.4825E+0

1 
2.9197E+0

1 
5.0279E+0

1 
6.5007E+0

3 3.9814E+01 

F4 Avg 
1.1171E+0

3 
1.9041E+0

3 
9.0399E+0

2 
1.2855E+0

3 
9.7305E+0

2 
1.1746E+0

3 
9.1429E+0

2 
1.6326E+0

3 
1.1498E+0

3 
2.5976E+0

3 
1.3777E+0

3 
8.9219E+0

2 
1.8363E+0

3 7.7159E+02 

 Std 
3.4491E+0

1 
6.6128E+0

1 
8.0698E+0

1 
5.7087E+0

1 
1.0280E+0

2 
1.1964E+0

2 
4.5669E+0

1 
5.0353E+0

1 
4.8697E+0

1 
3.6170E+0

2 
2.7821E+0

1 
6.3338E+0

1 
4.7540E+0

1 3.3674E+01 

F5 Avg 
6.0025E+0

2 
6.8915E+0

2 
6.1597E+0

2 
6.6922E+0

2 
6.1093E+0

2 
6.3821E+0

2 
6.0000E+0

2 
6.8071E+0

2 
6.4944E+0

2 
6.8990E+0

2 
6.0000E+0

2 
6.0274E+0

2 
6.8888E+0

2 6.0090E+02 

 Std 
1.0825E-01 

3.6040E+0
0 

1.2100E+0
1 

2.6569E+0
0 

3.4919E+0
0 

8.1084E+0
0 3.0811E-13 

5.8261E+0
0 

2.8288E+0
0 

8.3554E+0
0 3.4689E-13 

5.9622E+0
0 

2.7450E+0
0 1.3810E+00 

F6 Avg 
2.3034E+0

3 
4.5820E+0

3 
1.5611E+0

3 
4.3137E+0

3 
1.2515E+0

3 
1.8409E+0

3 
1.2327E+0

3 
1.8341E+0

3 
1.2536E+0

3 
1.5752E+0

4 
1.6883E+0

3 
2.1378E+0

3 
4.2068E+0

3 1.2805E+03 

 Std 
2.7632E+0

2 
1.3095E+0

2 
9.2018E+0

1 
1.2823E+0

2 
6.0905E+0

1 
2.0003E+0

2 
3.6330E+0

1 
7.5742E+0

1 
6.2017E+0

1 
1.7249E+0

3 
3.0774E+0

1 
2.6960E+0

2 
1.2430E+0

2 9.5568E+01 

F7 Avg 
1.6574E+0

3 
2.3973E+0

3 
1.2573E+0

3 
1.8368E+0

3 
1.3079E+0

3 
1.5355E+0

3 
1.2079E+0

3 
2.0702E+0

3 
1.6123E+0

3 
3.1273E+0

3 
1.6641E+0

3 
1.2581E+0

3 
2.3575E+0

3 1.0832E+03 

 Std 
5.6162E+0

1 
5.4914E+0

1 
5.5998E+0

1 
5.4217E+0

1 
7.9803E+0

1 
1.5323E+0

2 
3.6044E+0

1 
5.8562E+0

1 
6.9421E+0

1 
2.7851E+0

2 
3.2268E+0

1 
5.1506E+0

1 
3.3807E+0

1 3.0015E+01 

F8 Avg 
1.8656E+0

4 
6.2505E+0

4 
1.4290E+0

4 
2.7798E+0

4 
1.4071E+0

4 
1.4295E+0

4 
6.5944E+0

3 
5.2564E+0

4 
1.7541E+0

4 
5.2910E+0

4 
9.0779E+0

2 
1.0757E+0

4 
5.8859E+0

4 4.7362E+03 

 Std 
1.8579E+0

3 
3.7965E+0

3 
5.0364E+0

3 
3.1276E+0

3 
5.0868E+0

3 
7.1741E+0

3 
1.5218E+0

3 
3.9902E+0

3 
1.6348E+0

3 
7.4817E+0

3 
2.1827E+0

1 
2.1334E+0

3 
2.7557E+0

3 1.2882E+03 

F9 Avg 
1.4045E+0

4 
3.0096E+0

4 
1.2871E+0

4 
1.8141E+0

4 
1.4396E+0

4 
1.5668E+0

4 
1.3071E+0

4 
2.4450E+0

4 
1.4321E+0

4 
1.7091E+0

4 
2.9516E+0

4 
1.1512E+0

4 
3.0548E+0

4 1.1757E+04 

 Std 
1.3089E+0

3 
1.1788E+0

3 
1.1707E+0

3 
1.3958E+0

3 
1.4898E+0

3 
1.6086E+0

3 
8.1122E+0

2 
1.1863E+0

3 
1.3168E+0

3 
1.3583E+0

3 
5.3552E+0

2 
6.0696E+0

2 
4.3061E+0

2 6.8763E+02 

F10 Avg 
1.4979E+0

3 
1.1455E+0

5 
5.1152E+0

5 
2.5365E+0

3 
2.2940E+0

3 
1.9528E+0

3 
1.6054E+0

3 
2.7163E+0

3 
1.5815E+0

3 
2.0692E+0

3 
1.8031E+0

3 
1.9245E+0

3 
8.2766E+0

4 2.0606E+03 

 Std 
7.1277E+0

1 
2.5087E+0

4 
1.1860E+0

5 
1.6839E+0

2 
1.8796E+0

2 
1.5001E+0

2 
6.0674E+0

1 
2.0241E+0

2 
1.0554E+0

2 
1.6475E+0

2 
4.7472E+0

1 
3.3612E+0

2 
8.1618E+0

3 2.3629E+02 

F11 Avg 
1.1275E+0

4 
9.7901E+1

0 
4.1469E+0

9 
1.4818E+0

8 
3.4000E+0

7 
6.4170E+0

5 
5.7220E+0

4 
5.2185E+0

8 
8.2017E+0

3 
6.3304E+0

3 
1.1116E+0

6 
1.4433E+0

4 
5.7879E+1

0 6.7557E+03 

 Std 
5.3848E+0

3 
1.3854E+1

0 
1.2949E+1

0 
4.3763E+0

7 
1.2779E+0

7 
2.0668E+0

6 
5.0274E+0

4 
7.2242E+0

7 
8.6790E+0

3 
8.0700E+0

2 
2.2757E+0

6 
5.5706E+0

3 
5.3818E+0

9 2.7009E+03 

F12 Avg 
8.6975E+0

3 
4.5795E+1

0 
3.9550E+0

9 
7.9477E+0

6 
1.6859E+0

5 
3.8239E+0

4 
7.8653E+0

3 
1.2692E+0

8 
5.4217E+0

3 
6.6503E+0

3 
3.2845E+0

4 
1.1498E+0

4 
1.6603E+1

0 4.7365E+03 

 Std 
5.1159E+0

3 
8.9582E+0

9 
7.2576E+0

9 
1.6227E+0

6 
5.6112E+0

4 
3.1317E+0

4 
4.0867E+0

3 
2.1017E+0

7 
6.9960E+0

2 
1.0830E+0

3 
1.5015E+0

4 
1.2084E+0

3 
2.7535E+0

9 1.0308E+03 

F13 Avg 
1.7853E+0

3 
1.2116E+0

8 
7.7126E+0

6 
2.3982E+0

5 
3.5372E+0

3 
2.0239E+0

3 
3.0572E+0

3 
6.9250E+0

5 
2.1408E+0

3 
2.5924E+0

3 
1.9519E+0

3 
2.5822E+0

3 
4.9549E+0

7 2.4040E+03 

 Std 
7.8665E+0

1 
5.9362E+0

7 
7.5381E+0

6 
9.0741E+0

4 
6.1701E+0

2 
1.7273E+0

2 
7.1322E+0

2 
2.4886E+0

5 
1.3169E+0

2 
2.8377E+0

2 
9.1382E+0

1 
2.8127E+0

2 
1.1768E+0

7 2.0219E+02 

F14 Avg 
7.7889E+0

3 
1.9774E+1

0 
2.0593E+0

9 
1.8622E+0

6 
1.4012E+0

4 
1.2416E+0

4 
1.8134E+0

3 
3.9480E+0

7 
2.5206E+0

3 
2.3212E+0

3 
4.6162E+0

3 
2.3500E+0

3 
3.7573E+0

9 2.0322E+03 

 Std 
3.7853E+0

3 
5.0789E+0

9 
2.2620E+0

9 
5.6122E+0

5 
1.1627E+0

4 
1.0982E+0

4 
1.5340E+0

2 
6.0374E+0

6 
3.0592E+0

2 
2.0288E+0

2 
4.0152E+0

3 
2.6498E+0

2 
7.3343E+0

8 1.1200E+02 

F15 Avg 
5.7260E+0

3 
3.1951E+0

4 
1.4279E+0

4 
8.1192E+0

3 
5.6795E+0

3 
5.9161E+0

3 
4.7745E+0

3 
8.3034E+0

3 
6.2009E+0

3 
3.5689E+0

3 
8.3386E+0

3 
4.5630E+0

3 
1.5063E+0

4 4.6029E+03 

 Std 
5.2092E+0

2 
1.0768E+0

4 
2.1048E+0

3 
8.9211E+0

2 
6.4190E+0

2 
4.8814E+0

2 
3.1762E+0

2 
6.0442E+0

2 
6.7594E+0

2 
6.4976E+0

2 
3.2302E+0

2 
6.6193E+0

2 
7.5370E+0

2 3.8063E+02 

F16 Avg 
5.1570E+0

3 
3.0031E+0

4 
8.8919E+0

3 
6.0203E+0

3 
4.5166E+0

3 
4.9788E+0

3 
4.2595E+0

3 
5.4633E+0

3 
4.9459E+0

3 
3.0001E+0

3 
6.3431E+0

3 
3.8009E+0

3 
1.0703E+0

4 3.8539E+03 

 Std 
4.3322E+0

2 
2.0897E+0

4 
1.4611E+0

3 
5.9718E+0

2 
5.5217E+0

2 
5.3062E+0

2 
3.4164E+0

2 
4.7368E+0

2 
5.4663E+0

2 
3.5114E+0

2 
2.8041E+0

2 
3.6574E+0

2 
1.6667E+0

3 3.2471E+02 

F17 Avg 
1.6982E+0

5 
1.7278E+0

8 
1.1909E+0

8 
3.9029E+0

6 
1.0148E+0

6 
8.6708E+0

6 
3.5173E+0

6 
2.6306E+0

6 
2.0465E+0

3 
2.1448E+0

3 
2.8887E+0

7 
3.9253E+0

3 
1.0081E+0

8 4.0135E+03 

 Std 
7.3380E+0

4 
1.1750E+0

8 
3.9567E+0

7 
1.4867E+0

6 
4.2309E+0

5 
5.4417E+0

6 
1.2295E+0

6 
7.6659E+0

5 
5.8191E+0

1 
8.1220E+0

1 
7.2031E+0

6 
1.1199E+0

3 
2.9107E+0

7 9.9586E+02 

F18 Avg 
7.4658E+0

3 
1.6734E+1

0 
2.2701E+0

9 
5.7722E+0

6 
6.6476E+0

3 
8.4640E+0

3 
2.2049E+0

3 
4.6865E+0

7 
3.6775E+0

3 
3.1987E+0

3 
1.4817E+0

4 
7.1545E+0

3 
3.4112E+0

9 4.0898E+03 

 Std 
3.9648E+0

3 
6.4130E+0

9 
2.0141E+0

9 
2.6212E+0

6 
3.4431E+0

3 
4.6262E+0

3 
1.4873E+0

2 
1.3504E+0

7 
7.4447E+0

2 
4.4197E+0

2 
1.2510E+0

4 
3.1143E+0

3 
7.7021E+0

8 2.5403E+03 

F19 Avg 
4.5137E+0

3 
5.7017E+0

3 
4.5430E+0

3 
4.8898E+0

3 
4.5564E+0

3 
4.2698E+0

3 
3.9305E+0

3 
4.8895E+0

3 
4.0044E+0

3 
6.0544E+0

3 
6.2198E+0

3 
3.5185E+0

3 
6.0597E+0

3 3.7573E+03 

 Std 
4.3390E+0

2 
5.2441E+0

2 
2.0138E+0

2 
3.9278E+0

2 
5.6794E+0

2 
4.8575E+0

2 
2.4996E+0

2 
4.6914E+0

2 
3.4942E+0

2 
5.5451E+0

2 
2.4528E+0

2 
3.5033E+0

2 
1.8391E+0

2 2.6260E+02 

F20 Avg 
2.4173E+0

3 
7.5779E+0

4 
3.1552E+0

3 
2.6681E+0

3 
2.4288E+0

3 
2.7659E+0

3 
2.3985E+0

3 
2.4923E+0

3 
2.1001E+0

3 
2.1306E+0

3 
2.3390E+0

3 
2.3441E+0

3 
4.3106E+0

4 2.2930E+03 

 Std 
7.5322E+0

1 
1.1481E+0

4 
4.1013E+0

3 
7.0213E+0

1 
6.9469E+0

1 
1.2836E+0

2 
3.7624E+0

1 
1.0632E+0

2 7.2785E-01 
5.5001E+0

1 
2.1022E+0

1 
6.0257E+0

1 
5.2663E+0

3 6.3936E+01 

F21 Avg 
2.9647E+0

3 
3.6437E+0

3 
2.9656E+0

3 
3.1045E+0

3 
2.7180E+0

3 
2.8788E+0

3 
2.8170E+0

3 
3.3900E+0

3 
2.9060E+0

3 
4.2203E+0

3 
3.1137E+0

3 
2.6098E+0

3 
3.6519E+0

3 2.4847E+03 

 Std 
4.6712E+0

1 
5.3905E+0

1 
1.4529E+0

2 
4.0948E+0

1 
7.6871E+0

1 
1.0976E+0

2 
5.2286E+0

1 
4.5464E+0

1 
5.5826E+0

1 
2.2119E+0

2 
2.9739E+0

1 
5.3629E+0

1 
3.2121E+0

1 3.9251E+01 

F22 Avg 
2.5000E+0

3 
2.5000E+0

3 
7.1655E+0

3 
2.5000E+0

3 
3.9492E+0

3 
6.8190E+0

3 
3.7946E+0

3 
2.5000E+0

3 
9.2266E+0

3 
1.3039E+0

4 
2.5000E+0

3 
5.7560E+0

3 
8.3615E+0

3 3.8081E+03 

 Std 
4.6252E-13 3.9608E-13 

4.2104E+0
3 4.6252E-13 

1.1179E+0
2 

9.5269E+0
2 

4.3630E+0
1 2.2328E-05 

6.9725E+0
2 

1.3778E+0
3 8.3119E-03 

6.4377E+0
2 

3.3370E+0
2 1.0272E+02 

F23 Avg 
2.6000E+0

3 
2.6000E+0

3 
2.6000E+0

3 
2.6000E+0

3 
5.3623E+0

3 
5.7576E+0

3 
3.5731E+0

3 
2.6000E+0

3 
2.6015E+0

3 
2.6400E+0

3 
2.6000E+0

3 
2.6013E+0

3 
2.6000E+0

3 2.6852E+03 



 

 Std 
0.0000E+0

0 3.6808E-13 
0.0000E+0

0 
0.0000E+0

0 
1.2788E+0

2 
1.1054E+0

3 
7.7758E+0

2 1.6170E-04 
3.1297E+0

0 
4.9827E+0

1 5.9583E-05 
2.7279E+0

0 
0.0000E+0

0 4.6142E+02 

F24 Avg 
2.7000E+0

3 
2.7000E+0

3 
2.7000E+0

3 
2.7000E+0

3 
3.3254E+0

3 
3.4670E+0

3 
3.2325E+0

3 
2.7000E+0

3 
3.0851E+0

3 
3.1613E+0

3 
2.7000E+0

3 
3.3749E+0

3 
2.7000E+0

3 3.3377E+03 

 Std 
0.0000E+0

0 2.5333E-13 
0.0000E+0

0 
0.0000E+0

0 
8.1213E+0

1 
7.9525E+0

1 
2.6793E+0

1 2.9477E-03 
2.8263E+0

2 
3.9351E+0

1 2.1584E-03 
8.6311E+0

1 
0.0000E+0

0 6.6431E+01 

F25 Avg 
2.8000E+0

3 
2.8000E+0

3 
2.8000E+0

3 
2.8000E+0

3 
1.5999E+0

4 
2.0179E+0

4 
1.4073E+0

4 
2.8000E+0

3 
2.8000E+0

3 
3.8314E+0

3 
2.8000E+0

3 
9.4955E+0

3 
2.8000E+0

3 1.3785E+04 

 Std 
0.0000E+0

0 3.3778E-13 
0.0000E+0

0 
0.0000E+0

0 
1.2283E+0

3 
3.4411E+0

3 
3.2460E+0

2 2.7918E-03 2.6176E-07 
2.8421E+0

3 1.2337E-03 
7.4203E+0

3 
0.0000E+0

0 3.5171E+03 

F26 Avg 
2.9000E+0

3 
2.9000E+0

3 
2.9000E+0

3 
2.9000E+0

3 
5.4393E+0

3 
7.3917E+0

3 
5.3629E+0

3 
2.9109E+0

3 
9.2679E+0

3 
1.5477E+0

4 
3.0891E+0

3 
7.0612E+0

3 
1.0927E+0

4 5.1414E+03 

 Std 
2.3126E-12 2.2133E-12 2.3126E-12 2.3126E-12 

3.8845E+0
2 

7.3336E+0
2 

1.6732E+0
2 

5.9472E+0
1 

2.2649E+0
3 

5.5717E+0
3 

4.9075E+0
2 

6.6407E+0
2 

5.7831E+0
2 2.6396E+02 

F27 Avg 
3.0000E+0

3 
3.0000E+0

3 
3.0000E+0

3 
3.0000E+0

3 
3.3590E+0

3 
3.9432E+0

3 
3.4065E+0

3 
3.0000E+0

3 
3.1452E+0

3 
3.2811E+0

3 
3.0000E+0

3 
3.3043E+0

3 
3.0000E+0

3 3.3100E+03 

 Std 
0.0000E+0

0 3.2705E-13 
0.0000E+0

0 
0.0000E+0

0 
2.7768E+0

1 
1.3627E+0

3 
2.2695E+0

1 2.4285E-03 
9.8828E+0

1 
2.4101E+0

1 8.4946E-04 
1.6861E+0

1 
0.0000E+0

0 2.6911E+01 

F28 Avg 
3.1000E+0

3 
3.1000E+0

3 
3.1000E+0

3 
3.1000E+0

3 
6.4440E+0

3 
7.1179E+0

3 
5.4163E+0

3 
3.2867E+0

3 
5.9819E+0

3 
5.1917E+0

3 
3.1000E+0

3 
6.1027E+0

3 
9.6638E+0

3 5.3438E+03 

 Std 
0.0000E+0

0 3.4817E-13 
0.0000E+0

0 
0.0000E+0

0 
5.0079E+0

2 
5.9758E+0

2 
2.8240E+0

2 
1.0184E+0

3 
6.1917E+0

2 
4.1034E+0

2 1.4386E-02 
4.7635E+0

2 
3.1434E+0

3 3.1060E+02 

F29 Avg 
3.2000E+0

3 
3.2000E+0

3 
3.2000E+0

3 
3.2000E+0

3 
1.2696E+0

6 
7.2062E+0

5 
1.1437E+0

4 
3.2188E+0

3 
2.3206E+0

4 
9.7587E+0

3 
3.2082E+0

3 
1.0589E+0

4 
3.2000E+0

3 9.4960E+03 

 Std 
0.0000E+0

0 2.8007E-13 
0.0000E+0

0 
0.0000E+0

0 
5.9923E+0

5 
8.0275E+0

5 
2.3683E+0

3 
2.0108E+0

1 
3.0084E+0

3 
9.4754E+0

2 
7.7020E+0

0 
1.0125E+0

3 
0.0000E+0

0 7.5364E+03 

 

 

Table A. 5 P-values of  Wilcoxon-signed-rank tests comparing 10-dimensional performance of  SBO and state-of-the-art algorithms. 
Fun SBO vs TLBO SBO vs PO SBO vs HHO SBO vs RIME SBO vs ALCPSO SBO vs CLPSO SBO vs CGPSO 

 p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  
F1 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.733307E-06 + 
F2 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 2.500000E-01 = 1.732216E-06 + 1.734398E-06 + 
F3 1.920921E-06 + 5.417863E-03 + 2.255124E-03 + 3.326890E-02 + 1.713764E-01 = 1.483928E-03 - 4.716175E-02 - 
F4 3.881114E-04 + 1.483928E-03 + 3.588845E-04 + 1.604638E-04 - 5.033236E-02 = 1.734398E-06 - 3.609433E-03 + 
F5 1.734398E-06 + 1.238080E-05 + 1.734398E-06 + 2.603328E-06 + 3.500896E-02 + 2.528756E-06 - 1.733307E-06 + 
F6 1.734398E-06 + 5.319684E-03 - 1.734398E-06 + 1.592702E-03 - 1.319417E-02 - 2.126636E-06 - 9.315659E-06 + 
F7 3.724265E-05 + 1.765513E-01 = 7.690859E-06 + 9.711049E-05 - 8.914895E-05 - 1.734398E-06 - 4.449337E-05 + 
F8 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 3.405257E-05 - 2.451309E-02 - 1.360111E-05 - 1.286631E-03 + 
F9 7.690859E-06 + 8.307070E-04 + 1.639446E-05 + 3.872303E-02 - 8.612125E-01 = 1.359477E-04 - 2.603328E-06 + 
F10 1.734398E-06 + 3.378854E-03 + 5.751653E-06 + 3.933344E-01 = 2.989310E-01 = 4.729202E-06 - 5.751653E-06 + 
F11 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.920921E-06 + 1.734398E-06 + 1.734398E-06 + 
F12 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 2.603328E-06 + 1.734398E-06 + 
F13 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 5.857116E-01 = 1.920921E-06 + 8.187753E-05 + 1.734398E-06 + 
F14 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.604638E-04 + 2.878599E-06 + 2.596713E-05 + 1.734398E-06 + 
F15 1.851897E-02 + 2.603328E-06 + 5.287248E-04 + 8.612125E-01 = 4.165338E-01 = 2.163022E-05 - 7.730944E-03 + 
F16 1.397456E-02 + 6.883593E-01 = 4.114031E-03 + 4.528065E-01 = 1.751839E-02 + 6.156406E-04 - 2.051529E-04 + 
F17 3.724265E-05 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 2.603328E-06 + 2.353421E-06 + 1.734398E-06 + 
F18 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 8.944301E-04 + 1.734398E-06 + 2.843424E-05 + 1.734398E-06 + 
F19 1.734398E-06 + 2.603328E-06 + 1.734398E-06 + 1.305916E-01 = 5.706437E-04 + 7.271050E-03 - 1.734398E-06 + 
F20 3.125000E-02 + 1.250000E-01 = 3.125000E-02 + 3.125000E-02 + 1.000000E+00 = 1.000000E+00 = 3.125000E-02 + 
F21 1.734398E-06 + 2.603328E-06 + 6.339136E-06 + 4.389618E-03 - 3.313349E-01 = 1.389801E-05 - 1.734398E-06 + 
F22 1.000000E+00 = 1.250000E-01 = 1.000000E+00 = 1.734398E-06 + 1.920921E-06 + 1.733307E-06 + 1.734398E-06 + 
F23 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 2.878599E-06 + 1.059050E-04 + 1.919723E-06 - 1.734398E-06 + 
F24 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 2.125320E-06 + 1.734398E-06 + 
F25 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 9.315659E-06 + 5.102948E-06 + 3.709353E-01 = 1.734398E-06 + 
F26 5.000000E-01 = 2.500000E-01 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.732216E-06 + 1.732216E-06 + 
F27 1.000000E+00 = 2.500000E-01 = 1.000000E+00 = 1.734398E-06 + 8.702572E-07 + 1.732216E-06 + 1.733307E-06 + 
F28 5.566447E-02 = 5.723187E-03 + 4.882813E-04 - 1.734398E-06 + 1.733307E-06 + 2.601745E-06 + 2.603328E-06 + 
F29 2.603328E-06 + 3.125000E-02 - 2.324219E-01 = 1.734398E-06 + 1.733307E-06 + 1.734398E-06 + 2.603328E-06 + 

 

Table A. 5 Continued. 
Fun SBO vs MSPSO SBO vs CMAES SBO vs DECLS SBO vs LSHADE_cnEpSin SBO vs SCADE SBO vs SHADE 

 p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  
F1 1.734398E-06 + 1.186958E-04 - 1.734398E-06 + 2.761773E-04 - 1.734398E-06 + 1.186958E-04 - 
F2 1.715929E-06 + 1.000000E+00 = 1.731126E-06 + 1.000000E+00 = 1.734398E-06 + 1.000000E+00 = 
F3 3.836735E-06 - 2.757967E-02 + 5.095698E-01 = 5.716356E-01 = 1.734398E-06 + 9.166357E-03 + 
F4 2.847757E-02 + 3.882182E-06 + 3.882182E-06 - 1.920921E-06 - 1.734398E-06 + 2.353421E-06 - 
F5 2.125320E-06 + 1.734398E-06 + 2.528756E-06 - 1.846219E-01 = 1.734398E-06 + 3.708847E-01 = 
F6 6.835856E-03 - 2.603328E-06 + 8.918727E-05 - 1.734398E-06 - 1.734398E-06 + 1.920921E-06 - 
F7 3.609433E-03 + 1.733307E-06 + 1.919723E-06 - 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F8 2.051529E-04 + 1.734398E-06 + 1.778929E-05 - 1.149758E-04 - 1.734398E-06 + 3.926148E-05 - 
F9 3.000989E-02 + 1.734398E-06 + 9.917946E-01 = 1.360111E-05 - 1.734398E-06 + 4.449337E-05 - 
F10 1.656553E-02 + 2.156527E-05 + 1.360111E-05 - 3.653222E-01 = 1.734398E-06 + 3.498587E-06 - 
F11 1.956922E-02 + 8.612125E-01 = 1.734398E-06 + 9.917946E-01 = 1.734398E-06 + 1.413895E-01 = 
F12 1.920921E-06 + 1.734398E-06 + 1.734398E-06 + 6.156406E-04 + 1.734398E-06 + 1.604638E-04 - 
F13 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 2.133581E-01 = 1.734398E-06 + 1.734398E-06 - 
F14 1.493564E-05 + 1.024633E-05 + 1.734398E-06 + 2.711552E-01 = 1.734398E-06 + 1.238080E-05 - 
F15 6.732798E-01 = 1.920921E-06 + 1.113801E-03 - 3.881114E-04 - 9.917946E-01 = 3.724265E-05 - 
F16 2.711552E-01 = 1.024633E-05 + 1.956922E-02 - 9.315659E-06 - 1.734398E-06 + 3.515237E-06 - 
F17 4.165338E-01 = 5.857116E-01 = 1.734398E-06 + 2.058882E-01 = 1.734398E-06 + 2.830789E-04 - 
F18 1.734398E-06 + 1.734398E-06 + 1.382036E-03 + 4.716175E-02 + 1.734398E-06 + 5.306992E-05 - 
F19 1.734398E-06 + 1.734398E-06 + 1.470396E-01 = 5.716458E-01 = 1.734398E-06 + 1.656553E-02 - 
F20 3.125000E-02 + 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 3.125000E-02 + 1.000000E+00 = 
F21 4.729202E-06 + 1.147201E-04 + 7.144292E-05 - 3.430056E-05 - 1.734398E-06 + 3.088395E-05 - 
F22 1.733307E-06 + 1.734398E-06 + 1.732216E-06 + 1.734398E-06 + 2.500000E-01 = 1.734398E-06 + 
F23 3.110813E-05 - 2.808059E-03 + 3.112315E-05 - 2.590596E-05 + 1.000000E+00 = 9.330858E-06 + 
F24 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.000000E+00 = 1.734398E-06 + 
F25 1.734398E-06 + 1.167905E-05 + 1.650154E-01 = 5.682682E-05 + 1.000000E+00 = 7.865833E-05 + 
F26 1.732216E-06 + 1.733307E-06 + 1.732216E-06 + 1.734398E-06 + 1.220703E-04 + 1.718093E-06 + 
F27 1.555978E-06 + 8.751626E-07 + 1.734398E-06 + 7.452313E-07 + 1.000000E+00 = 8.312542E-07 + 
F28 1.733307E-06 + 1.734398E-06 + 2.876863E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F29 1.920921E-06 + 1.319417E-02 + 1.732216E-06 + 5.319684E-03 + 1.644006E-03 + 8.589583E-02 = 



 

 

Table A. 6 P-values of  Wilcoxon-signed-rank tests comparing 30-dimensional performance of  SBO and state-of-the-art algorithms. 
Fun SBO vs TLBO SBO vs PO SBO vs HHO SBO vs RIME SBO vs ALCPSO SBO vs CLPSO SBO vs CGPSO 

 p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  
F1 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F2 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F3 1.734398E-06 + 7.690859E-06 + 1.734398E-06 + 2.613431E-04 + 1.742281E-04 + 1.588555E-01 = 1.779074E-01 = 
F4 1.920921E-06 + 9.917946E-01 = 1.056950E-04 + 1.734398E-06 - 8.307070E-04 - 1.734398E-06 - 4.729202E-06 + 
F5 1.734398E-06 + 3.724265E-05 + 1.734398E-06 + 5.792446E-05 + 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 
F6 1.734398E-06 + 4.071512E-05 - 1.734398E-06 + 1.126540E-05 - 1.588555E-01 = 1.734398E-06 - 2.878599E-06 + 
F7 1.734398E-06 + 9.367560E-02 = 1.920921E-06 + 6.339136E-06 - 2.182672E-02 - 1.734398E-06 - 2.353421E-06 + 
F8 1.734398E-06 + 4.284300E-01 = 1.734398E-06 + 7.513662E-05 - 4.276669E-02 - 1.734398E-06 - 1.734398E-06 + 
F9 1.734398E-06 + 8.290130E-01 = 4.285686E-06 + 3.388562E-01 = 3.854236E-03 + 5.706437E-04 - 1.734398E-06 + 
F10 1.734398E-06 + 8.216736E-03 + 1.734398E-06 + 4.860261E-05 + 3.609433E-03 + 2.878599E-06 - 1.734398E-06 + 
F11 1.734398E-06 + 2.126636E-06 + 1.734398E-06 + 1.734398E-06 + 3.515237E-06 + 1.734398E-06 + 1.734398E-06 + 
F12 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 4.114031E-03 + 8.936444E-01 = 1.734398E-06 + 
F13 1.734398E-06 + 1.238080E-05 + 1.734398E-06 + 4.276669E-02 + 2.224827E-04 + 1.734398E-06 + 1.734398E-06 + 
F14 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 2.353421E-06 + 2.163022E-05 + 1.734398E-06 + 
F15 1.920921E-06 + 4.285686E-06 + 4.449337E-05 + 1.197338E-03 - 3.820342E-01 = 2.126636E-06 - 4.896901E-04 + 
F16 2.353421E-06 + 2.878599E-06 + 1.024633E-05 + 2.563712E-02 - 1.204447E-01 = 2.224827E-04 - 1.024633E-05 + 
F17 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F18 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 4.285686E-06 + 1.920921E-06 + 9.099308E-01 = 1.734398E-06 + 
F19 1.493564E-05 + 1.382036E-03 + 7.690859E-06 + 1.413895E-01 = 8.774027E-01 = 2.163022E-05 - 1.024633E-05 + 
F20 1.734398E-06 + 2.163022E-05 + 1.734398E-06 + 1.477276E-04 + 8.466082E-06 + 1.565848E-02 + 3.493456E-01 = 
F21 1.920921E-06 + 2.765274E-03 - 5.306992E-05 + 2.353421E-06 - 4.449337E-05 - 1.920921E-06 - 2.603328E-06 + 
F22 1.000000E+00 = 3.906250E-03 + 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F23 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.644730E-06 + 1.733307E-06 + 1.733307E-06 + 
F24 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F25 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 2.563083E-06 + 1.733307E-06 + 1.733307E-06 + 
F26 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F27 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.733307E-06 + 1.733307E-06 + 
F28 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F29 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 

 

Table A. 6 Continued. 
Fun SBO vs MSPSO SBO vs CMAES SBO vs DECLS SBO vs LSHADE_cnEpSin SBO vs SCADE SBO vs SHADE 

 p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  
F1 1.734398E-06 + 1.734398E-06 - 2.370448E-05 + 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F2 3.882182E-06 - 1.734398E-06 - 1.734398E-06 + 1.286631E-03 - 1.734398E-06 + 2.765274E-03 + 
F3 1.734398E-06 - 1.734398E-06 - 2.163022E-05 + 6.639213E-04 - 1.734398E-06 + 6.983783E-06 - 
F4 2.210216E-01 = 1.734398E-06 + 2.414704E-03 - 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F5 1.734398E-06 + 1.734398E-06 + 1.734398E-06 - 6.339136E-06 + 1.734398E-06 + 2.894771E-01 = 
F6 2.126636E-06 - 2.596713E-05 + 8.450804E-01 = 2.126636E-06 - 1.734398E-06 + 1.734398E-06 - 
F7 7.690859E-06 + 1.920921E-06 + 8.450804E-01 = 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F8 9.315659E-06 + 1.734398E-06 + 1.734398E-06 - 4.449337E-05 - 1.734398E-06 + 1.734398E-06 - 
F9 3.317258E-04 + 1.734398E-06 + 1.734398E-06 + 4.729202E-06 - 1.734398E-06 + 1.920921E-06 - 
F10 2.603328E-06 + 4.729202E-06 + 4.491890E-02 - 1.734398E-06 + 1.734398E-06 + 3.515237E-06 + 
F11 3.285711E-01 = 1.204447E-01 = 1.734398E-06 + 9.262551E-01 = 1.734398E-06 + 2.303814E-02 - 
F12 1.734398E-06 + 1.734398E-06 + 4.716175E-02 + 1.734398E-06 + 1.734398E-06 + 2.563712E-02 + 
F13 1.734398E-06 + 1.734398E-06 + 1.063942E-01 = 1.734398E-06 + 1.734398E-06 + 4.285686E-06 + 
F14 1.639446E-05 + 6.339136E-06 + 5.792446E-05 + 3.181679E-06 + 1.734398E-06 + 9.315659E-06 + 
F15 7.188876E-01 = 4.681835E-03 - 1.798848E-05 - 2.353421E-06 - 1.734398E-06 + 1.734398E-06 - 
F16 1.245256E-02 + 3.709353E-01 = 5.193067E-02 = 1.639446E-05 - 1.920921E-06 + 1.493564E-05 - 
F17 1.734398E-06 - 1.734398E-06 - 1.734398E-06 + 1.920921E-06 - 1.734398E-06 + 1.734398E-06 - 
F18 3.405257E-05 + 5.751653E-06 + 1.734398E-06 + 3.405257E-05 + 1.734398E-06 + 4.860261E-05 + 
F19 4.896901E-04 + 1.734398E-06 + 1.890972E-04 - 1.238080E-05 - 1.734398E-06 + 8.466082E-06 - 
F20 1.734398E-06 - 5.751653E-06 - 6.983783E-06 + 6.892290E-05 - 1.734398E-06 + 1.126540E-05 - 
F21 5.983560E-02 = 1.734398E-06 + 3.064999E-04 - 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F22 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 2.701595E-05 + 1.734398E-06 + 
F23 1.733307E-06 + 6.103516E-05 + 1.734398E-06 + 3.070447E-06 + 1.000000E+00 = 1.167905E-05 + 
F24 1.734398E-06 + 1.734398E-06 + 1.733307E-06 + 1.734398E-06 + 1.000000E+00 = 1.734398E-06 + 
F25 1.733307E-06 + 1.293626E-06 + 1.733307E-06 + 1.290214E-06 + 1.000000E+00 = 2.561358E-06 + 
F26 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F27 1.732216E-06 + 1.614688E-06 + 1.734398E-06 + 1.734398E-06 + 1.000000E+00 = 1.644730E-06 + 
F28 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.000000E+00 = 1.734398E-06 + 
F29 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 6.103516E-05 + 1.734398E-06 + 

 

Table A. 7 P-values of  Wilcoxon-signed-rank tests comparing 50-dimensional performance of  SBO and state-of-the-art algorithms. 
Fun SBO vs TLBO SBO vs PO SBO vs HHO SBO vs RIME SBO vs ALCPSO SBO vs CLPSO SBO vs CGPSO 

 p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  
F1 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 6.983783E-06 + 4.389618E-03 + 1.920921E-06 - 1.734398E-06 + 
F2 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F3 1.734398E-06 + 1.126540E-05 + 2.878599E-06 + 3.184906E-01 = 2.957462E-03 + 8.971784E-02 = 3.161765E-03 + 
F4 1.734398E-06 + 2.353421E-06 - 1.734398E-06 + 1.734398E-06 - 3.881114E-04 - 1.734398E-06 - 1.734398E-06 + 
F5 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 
F6 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 2.765274E-03 - 1.734398E-06 - 7.730944E-03 + 
F7 1.734398E-06 + 3.064999E-04 - 3.405257E-05 + 1.734398E-06 - 6.983783E-06 - 1.734398E-06 - 3.181679E-06 + 
F8 1.734398E-06 + 6.892290E-05 - 1.734398E-06 + 6.156406E-04 - 1.113801E-03 - 1.734398E-06 - 1.734398E-06 + 
F9 1.734398E-06 + 7.521331E-02 = 2.603328E-06 + 9.262551E-01 = 8.918727E-05 + 3.064999E-04 - 1.734398E-06 + 
F10 1.734398E-06 + 1.920921E-06 + 1.734398E-06 + 1.734398E-06 + 2.353421E-06 + 1.319417E-02 - 1.734398E-06 + 
F11 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 4.729202E-06 + 1.734398E-06 + 1.734398E-06 + 
F12 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 2.370448E-05 + 4.729202E-06 + 1.156082E-01 = 1.734398E-06 + 
F13 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 4.949805E-02 + 7.690859E-06 + 4.071512E-05 + 1.734398E-06 + 
F14 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 9.589902E-01 = 1.734398E-06 + 
F15 1.734398E-06 + 1.920921E-06 + 4.729202E-06 + 2.536441E-01 = 7.498712E-01 = 1.238080E-05 - 1.920921E-06 + 
F16 2.353421E-06 + 1.734398E-06 + 2.596713E-05 + 7.513662E-05 - 9.589902E-01 = 1.238080E-05 - 2.414704E-03 + 
F17 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F18 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 7.343253E-01 = 3.388562E-01 = 2.126636E-06 - 1.734398E-06 + 



 

F19 1.798848E-05 + 2.163022E-05 + 1.238080E-05 + 3.609433E-03 - 2.711552E-01 = 6.892290E-05 - 6.319757E-05 + 
F20 1.734398E-06 + 5.667173E-03 + 1.734398E-06 + 8.971784E-02 = 2.603328E-06 + 3.600388E-01 = 6.156406E-04 + 
F21 1.734398E-06 + 1.972948E-05 - 2.830789E-04 + 1.734398E-06 - 3.515237E-06 - 1.734398E-06 - 1.734398E-06 + 
F22 1.000000E+00 = 1.964367E-04 + 1.000000E+00 = 1.734398E-06 + 1.732216E-06 + 1.734398E-06 + 1.734398E-06 + 
F23 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.674179E-06 + 1.734398E-06 + 1.734398E-06 + 
F24 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F25 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.733307E-06 + 1.734398E-06 + 1.734398E-06 + 
F26 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.733307E-06 + 1.733307E-06 + 1.734398E-06 + 
F27 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.732216E-06 + 1.734398E-06 + 1.734398E-06 + 
F28 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.730037E-06 + 1.730037E-06 + 
F29 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.733307E-06 + 1.734398E-06 + 1.734398E-06 + 

 

Table A. 7 Continued. 
Fun SBO vs MSPSO SBO vs CMAES SBO vs DECLS SBO vs LSHADE_cnEpSin SBO vs SCADE SBO vs SHADE 

 p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  
F1 1.734398E-06 - 1.734398E-06 - 2.848596E-02 + 1.109257E-01 = 1.734398E-06 + 1.734398E-06 - 
F2 1.734398E-06 - 1.734398E-06 - 1.734398E-06 + 1.020107E-01 = 1.734398E-06 + 2.765274E-03 + 
F3 1.734398E-06 - 9.315659E-06 - 2.451903E-01 = 1.413895E-01 = 1.734398E-06 + 2.603328E-06 - 
F4 5.716458E-01 = 1.734398E-06 + 2.711552E-01 = 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F5 1.734398E-06 + 1.734398E-06 + 1.734398E-06 - 2.126636E-06 + 1.734398E-06 + 3.609433E-03 + 
F6 1.734398E-06 - 1.920921E-06 + 2.051529E-04 - 8.466082E-06 - 1.734398E-06 + 1.734398E-06 - 
F7 2.989438E-01 = 1.734398E-06 + 1.798848E-05 - 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F8 5.306992E-05 + 1.734398E-06 + 1.734398E-06 - 1.920921E-06 - 1.734398E-06 + 1.734398E-06 - 
F9 1.656553E-02 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 1.920921E-06 - 
F10 2.603328E-06 + 1.734398E-06 + 2.353421E-06 + 2.126636E-06 + 1.734398E-06 + 1.734398E-06 + 
F11 2.182672E-02 - 3.326890E-02 - 1.734398E-06 + 1.986102E-01 = 1.734398E-06 + 7.271050E-03 - 
F12 3.854236E-03 - 1.986102E-01 = 1.734398E-06 + 6.883593E-01 = 1.734398E-06 + 2.411796E-04 - 
F13 1.734398E-06 + 1.734398E-06 + 1.920921E-06 + 1.734398E-06 + 1.734398E-06 + 1.920921E-06 + 
F14 1.149922E-04 + 8.944301E-04 + 1.734398E-06 + 1.056950E-04 + 1.734398E-06 + 5.667173E-03 + 
F15 6.435166E-01 = 2.957462E-03 - 4.907985E-01 = 4.729202E-06 - 1.734398E-06 + 6.319757E-05 - 
F16 2.058882E-01 = 1.798848E-05 - 1.044440E-02 + 1.734398E-06 - 1.734398E-06 + 6.339136E-06 - 
F17 1.734398E-06 - 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F18 8.918727E-05 - 1.972948E-05 - 2.182672E-02 + 9.711049E-05 - 1.734398E-06 + 1.360111E-05 - 
F19 6.732798E-01 = 2.126636E-06 + 6.424212E-03 + 5.216493E-06 - 1.734398E-06 + 1.360111E-05 - 
F20 1.734398E-06 - 1.024633E-05 - 6.883593E-01 = 1.832580E-03 - 1.734398E-06 + 7.690859E-06 - 
F21 5.319684E-03 - 1.734398E-06 + 8.918727E-05 - 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F22 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 8.298099E-06 + 1.734398E-06 + 
F23 1.734398E-06 + 1.160692E-06 + 1.733307E-06 + 2.615798E-07 + 1.000000E+00 = 1.728948E-06 + 
F24 1.734398E-06 + 1.734398E-06 + 1.733307E-06 + 1.734398E-06 + 1.000000E+00 = 1.734398E-06 + 
F25 1.734398E-06 + 9.000406E-07 + 1.732216E-06 + 1.014619E-06 + 1.000000E+00 = 1.112342E-06 + 
F26 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F27 1.734398E-06 + 1.725686E-06 + 1.733307E-06 + 1.734398E-06 + 1.000000E+00 = 1.726773E-06 + 
F28 1.730037E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.000000E+00 = 1.734398E-06 + 
F29 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.000000E+00 = 1.734398E-06 + 

 

Table A. 8 P-values of  Wilcoxon-signed-rank tests comparing 100-dimensional performance of  SBO and state-of-the-art 
algorithms. 

Fun SBO vs TLBO SBO vs PO SBO vs HHO SBO vs RIME SBO vs ALCPSO SBO vs CLPSO SBO vs CGPSO 

 p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  
F1 1.734398E-06 + 3.882182E-06 + 1.734398E-06 + 2.370448E-05 + 1.020107E-01 = 5.751653E-06 - 1.734398E-06 + 
F2 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F3 1.734398E-06 + 6.424212E-03 + 1.920921E-06 + 9.367560E-02 = 1.734398E-06 + 1.972948E-05 - 3.515237E-06 + 
F4 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 1.639446E-05 - 5.193067E-02 = 1.734398E-06 - 1.734398E-06 + 
F5 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 
F6 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 3.515237E-06 - 1.734398E-06 - 1.734398E-06 - 
F7 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 3.317258E-04 - 1.734398E-06 - 1.734398E-06 + 
F8 1.734398E-06 + 4.449337E-05 - 1.734398E-06 + 1.742281E-04 - 2.584559E-03 - 1.734398E-06 - 1.734398E-06 + 
F9 1.734398E-06 + 2.105260E-03 - 1.734398E-06 + 4.048347E-01 = 1.359477E-04 + 1.964581E-03 - 1.734398E-06 + 
F10 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 3.724265E-05 + 1.734398E-06 + 
F11 1.734398E-06 + 1.197338E-03 + 1.734398E-06 + 1.734398E-06 + 6.156406E-04 + 1.734398E-06 + 1.734398E-06 + 
F12 1.734398E-06 + 2.353421E-06 + 1.734398E-06 + 1.734398E-06 + 5.216493E-06 + 8.130169E-01 = 1.734398E-06 + 
F13 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.360111E-05 + 1.734398E-06 + 1.734398E-06 + 
F14 1.734398E-06 + 2.603328E-06 + 1.734398E-06 + 7.521331E-02 = 6.564114E-02 = 1.920921E-06 - 1.734398E-06 + 
F15 1.734398E-06 + 1.920921E-06 + 1.920921E-06 + 6.883593E-01 = 2.536441E-01 = 2.603328E-06 - 1.734398E-06 + 
F16 1.734398E-06 + 2.353421E-06 + 1.639446E-05 + 5.306992E-05 - 1.470396E-01 = 3.882182E-06 - 1.319417E-02 + 
F17 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F18 1.734398E-06 + 3.882182E-06 + 1.734398E-06 + 4.165338E-01 = 2.989438E-01 = 2.603328E-06 - 1.734398E-06 + 
F19 2.603328E-06 + 9.099308E-01 = 1.964581E-03 + 7.188876E-01 = 2.702916E-02 - 2.370448E-05 - 1.656553E-02 + 
F20 1.734398E-06 + 7.655193E-01 = 1.734398E-06 + 6.883593E-01 = 1.734398E-06 + 2.622987E-01 = 6.035006E-03 + 
F21 1.734398E-06 + 9.099308E-01 = 1.734398E-06 + 1.734398E-06 - 1.592702E-03 - 1.920921E-06 - 1.734398E-06 + 
F22 1.000000E+00 = 2.930525E-04 + 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.733307E-06 + 1.733307E-06 + 
F23 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.733307E-06 + 1.733307E-06 + 
F24 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F25 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F26 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F27 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F28 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F29 1.000000E+00 = 1.000000E+00 = 1.000000E+00 = 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 

 

Table A. 8 Continued. 
Fun SBO vs MSPSO SBO vs CMAES SBO vs DECLS SBO vs LSHADE_cnEpSin SBO vs SCADE SBO vs SHADE 

 p-Value  p-Value  p-Value  p-Value  p-Value  p-Value  
F1 1.734398E-06 - 1.734398E-06 - 4.165338E-01 = 9.367560E-02 = 1.734398E-06 + 1.734398E-06 - 
F2 1.734398E-06 - 1.734398E-06 - 1.734398E-06 + 3.709353E-01 = 1.734398E-06 + 3.588845E-04 + 
F3 1.734398E-06 - 2.353421E-06 - 2.353421E-06 - 8.466082E-06 - 1.734398E-06 + 1.734398E-06 - 
F4 6.835856E-03 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F5 1.734398E-06 + 1.734398E-06 + 1.734398E-06 - 1.972948E-05 + 1.734398E-06 + 7.521331E-02 = 



 

F6 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 3.000989E-02 - 1.734398E-06 + 1.734398E-06 - 
F7 2.563712E-02 - 1.734398E-06 + 5.304401E-01 = 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F8 1.245256E-02 - 1.734398E-06 + 1.734398E-06 - 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F9 5.999359E-01 = 5.216493E-06 + 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 2.603328E-06 - 
F10 4.681835E-03 + 1.734398E-06 + 1.734398E-06 + 1.920921E-06 + 1.734398E-06 + 1.734398E-06 + 
F11 3.881114E-04 - 1.493564E-05 - 1.920921E-06 + 2.303814E-02 + 1.734398E-06 + 4.449337E-05 - 
F12 3.854236E-03 - 1.063942E-01 = 1.734398E-06 + 6.835856E-03 + 1.734398E-06 + 7.157034E-04 - 
F13 1.734398E-06 + 1.734398E-06 + 2.878599E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F14 3.882182E-06 - 2.603328E-06 - 7.157034E-04 - 2.603328E-06 - 1.734398E-06 + 2.126636E-06 - 
F15 6.035006E-03 + 1.734398E-06 - 1.734398E-06 + 8.466082E-06 - 1.734398E-06 + 1.920921E-06 - 
F16 3.326890E-02 - 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F17 1.734398E-06 - 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F18 6.892290E-05 - 4.860261E-05 - 1.197338E-03 + 8.774027E-01 = 1.734398E-06 + 1.149922E-04 - 
F19 1.250568E-04 - 1.734398E-06 + 1.734398E-06 + 3.515237E-06 - 1.734398E-06 + 8.466082E-06 - 
F20 1.734398E-06 - 1.734398E-06 - 1.149922E-04 - 5.287248E-04 - 1.734398E-06 + 9.315659E-06 - 
F21 4.533563E-04 - 1.734398E-06 + 1.734398E-06 + 1.734398E-06 - 1.734398E-06 + 1.734398E-06 - 
F22 1.733307E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F23 1.733307E-06 + 7.452313E-07 + 1.734398E-06 + 4.175458E-07 + 1.000000E+00 = 1.433636E-06 + 
F24 1.734398E-06 + 1.734398E-06 + 1.733307E-06 + 1.734398E-06 + 1.000000E+00 = 1.734398E-06 + 
F25 1.734398E-06 + 1.445577E-07 + 1.734398E-06 + 1.293626E-06 + 1.000000E+00 = 1.734398E-06 + 
F26 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 
F27 1.732216E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.000000E+00 = 1.733307E-06 + 
F28 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 8.298099E-06 + 1.734398E-06 + 
F29 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.734398E-06 + 1.000000E+00 = 1.734398E-06 + 

 

Table A. 9. PSNR result at 6, 12, 18 threshold level. 
threshold image metric SBO LSEOFOA IWOA IGWO ASCA ILSSA EHSSA BLPSO 

6 

A 
Avg 21.657441  21.299473  20.881639  21.138919  18.533881  21.537348  21.139851  21.252791  
Std 0.105524  0.415588  0.666153  0.560515  1.502677  0.211088  0.330432  0.421642  

B 
Avg 22.414035  21.605654  21.381196  21.598615  18.598304  21.492704  21.527380  21.341932  
Std 0.210675  0.709652  0.894425  0.730698  1.027404  1.325361  0.548446  0.741840  

C 
Avg 21.761455  21.541961  21.143319  21.318489  18.645516  21.734471  21.029640  20.504077  
Std 0.325943  0.459165  0.864878  0.982785  1.989358  0.408508  0.720016  0.822561  

D 
Avg 21.458928  20.861526  20.524009  20.987616  18.532637  21.277166  20.708120  20.752068  
Std 0.490705  0.568861  0.919899  0.680491  1.455051  0.782262  0.699296  0.394473  

E 
Avg 22.516172  21.636205  21.641281  21.889396  18.734231  22.155089  21.302845  21.111055  
Std 0.512460  0.802690  1.059981  0.858098  1.878275  0.581801  0.775936  0.906488  

F 
Avg 21.558521  20.805125  20.930165  21.023478  17.782491  20.671429  20.602669  20.925854  
Std 0.330696  0.816322  1.284521  0.758309  1.836108  1.569353  0.673272  0.709161  

G 
Avg 21.124710  20.402049  20.470914  20.234794  16.510611  20.152287  19.205931  20.300474  
Std 0.402850  0.780084  1.188053  1.108532  2.110612  1.568949  0.990257  0.910440  

H 
Avg 21.312800  20.804662  20.436933  20.799352  18.021139  21.252588  20.392404  20.730541  
Std 0.336779  0.575520  1.030024  0.709689  1.373942  0.772953  0.800305  0.612423  

I 
Avg 22.957631  22.036043  21.173683  21.938248  18.427331  22.363297  21.491169  22.046628  
Std 0.393460  0.801438  1.597190  0.990190  1.782028  1.102407  0.915247  0.768203  

12 

A 
Avg 26.634558  25.516681  25.148281  25.033926  21.668762  26.273994  25.938940  24.965045  
Std 0.658522  0.867737  1.066619  1.077555  1.704668  0.716955  0.933090  0.782851  

B 
Avg 26.613177  25.833062  25.452432  25.472871  21.943129  26.009812  25.895023  25.403787  
Std 0.840966  0.765892  1.101633  1.012336  1.383333  1.099739  0.704733  0.646111  

C 
Avg 26.862340  24.994254  24.838392  24.834333  21.826878  25.860315  25.545642  25.089764  
Std 0.480587  1.254649  1.240323  1.045799  2.018723  1.246501  1.399171  0.984077  

D 
Avg 26.163580  24.880752  24.686047  24.104866  20.621750  25.274772  25.534605  24.849461  
Std 0.882771  0.994847  1.144603  1.309710  2.598714  0.981790  0.842399  1.099870  

E 
Avg 26.312174  25.311227  25.065961  24.285622  20.381590  25.472177  26.093026  24.626795  
Std 1.007737  1.242647  1.368330  1.450098  2.207195  1.569968  0.962065  1.393745  

F 
Avg 25.931439  25.124695  25.191976  24.837580  21.049414  25.183951  25.114114  24.952348  
Std 1.435456  1.446333  1.725309  1.791360  2.464157  1.593389  1.003074  1.238229  

G 
Avg 26.759403  24.418353  24.225731  24.797659  19.374086  25.262958  24.287568  25.031054  
Std 0.775194  1.506532  1.844887  1.372419  2.533936  1.456361  1.357270  0.830119  

H 
Avg 26.331963  25.045567  25.009351  24.819902  21.005849  25.672126  25.274949  24.945515  
Std 0.627215  1.056285  1.353925  0.942290  2.477701  1.087219  1.021582  0.693561  

I 
Avg 26.814438  25.904464  25.423197  24.845108  21.624058  25.544404  26.174056  25.000428  
Std 0.909595  1.060959  1.174806  1.737640  2.267813  1.461960  0.949172  1.117698  

18 

A 
Avg 29.134138  27.826196  27.526185  26.761850  23.886163  28.841018  27.715487  27.192129  

Std 0.686612  1.021448  1.666097  1.301918  2.207464  1.066838  1.946905  0.765970  

B 
Avg 29.181722  27.514343  27.530479  27.541595  24.670074  28.425506  28.695243  27.572135  

Std 0.767445  1.372351  1.400806  1.080416  2.407717  1.559410  1.143542  1.007029  

C 
Avg 29.073812  27.362399  27.387708  27.056475  24.047837  28.491360  28.320419  27.218262  

Std 0.818594  1.549608  1.382270  1.349996  2.330735  1.263482  1.145484  1.501526  

D 
Avg 28.516411  26.833174  27.444262  26.629615  23.728648  28.051245  28.306021  27.796454  

Std 1.275696  1.164785  1.600095  1.407376  2.662732  1.148671  1.325389  0.867147  

E 
Avg 28.797833  27.656207  27.169837  26.873062  23.302888  28.077111  28.619067  26.730857  

Std 1.076332  1.303103  2.215369  1.990551  3.940730  1.534838  0.961262  1.324182  

F 
Avg 28.771551  26.898740  27.414442  26.945713  24.242532  28.399812  27.884394  27.821172  

Std 0.805166  1.574307  1.930985  1.326389  2.791670  1.717629  1.337462  1.235520  

G 
Avg 28.966491  26.395913  27.886149  27.470718  22.697378  28.292404  27.270267  27.677752  

Std 1.278436  1.675817  1.624162  1.459952  2.897857  1.442605  1.796626  1.412879  

H 
Avg 29.038100  27.119273  27.584457  26.846010  24.089093  28.146358  27.985347  27.193134  

Std 1.018682  1.375851  1.117217  1.613386  2.403746  1.411591  1.308821  1.192982  

I 
Avg 28.897047  27.746529  27.534711  27.145071  23.428639  28.425853  28.735965  27.093143  

Std 1.206029  1.353828  1.580393  1.989464  2.933014  1.711808  1.218395  1.424351  

 

Table A. 10. FSIM result at 6, 12, 18 threshold level. 
threshold image metric SBO LSEOFOA IWOA IGWO ASCA ILSSA EHSSA BLPSO 

6 
A 

Avg 0.986886  0.982936  0.983267  0.983722  0.947351  0.985498  0.980794  0.986755  
Std 0.001601  0.004955  0.005186  0.006344  0.039807  0.003272  0.004876  0.003925  

B Avg 0.966651  0.959606  0.952492  0.958039  0.902327  0.954805  0.957692  0.954824  



 

Std 0.002231  0.005870  0.008291  0.008359  0.031531  0.015384  0.006394  0.010400  

C 
Avg 0.974674  0.973480  0.969348  0.970597  0.925995  0.973386  0.968539  0.966855  
Std 0.001746  0.003350  0.011136  0.008566  0.057363  0.003922  0.009587  0.011753  

D 
Avg 0.950182  0.942729  0.926753  0.940646  0.880912  0.945426  0.936946  0.939591  
Std 0.006750  0.008818  0.021960  0.014175  0.035601  0.016015  0.013130  0.012144  

E 
Avg 0.956718  0.949409  0.943684  0.948440  0.883396  0.951754  0.947253  0.931373  
Std 0.008193  0.010025  0.018350  0.013036  0.048718  0.013991  0.010887  0.021238  

F 
Avg 0.975372  0.968731  0.965496  0.969630  0.901271  0.956501  0.961648  0.971106  
Std 0.002777  0.007209  0.019401  0.010966  0.052691  0.033997  0.012737  0.009985  

G 
Avg 0.962213  0.952914  0.952081  0.949722  0.869003  0.943508  0.928381  0.950423  
Std 0.007482  0.012650  0.021647  0.015406  0.077167  0.034048  0.021682  0.020853  

H 
Avg 0.965295  0.958615  0.955299  0.957683  0.909276  0.962051  0.951086  0.964502  
Std 0.005123  0.008053  0.012481  0.011559  0.042429  0.013269  0.015698  0.010522  

I 
Avg 0.981505  0.975863  0.955930  0.971194  0.884805  0.969479  0.966875  0.973606  
Std 0.001002  0.007043  0.034383  0.010883  0.076243  0.025481  0.020331  0.008557  

12 

A 
Avg 0.994188  0.991497  0.991292  0.989124  0.968803  0.992968  0.991680  0.990596  
Std 0.002008  0.004310  0.004574  0.006763  0.023825  0.003197  0.005969  0.003534  

B 
Avg 0.982872  0.979917  0.975706  0.974464  0.945111  0.978951  0.980400  0.977117  
Std 0.003878  0.003755  0.006254  0.007295  0.021099  0.007044  0.003343  0.004646  

C 
Avg 0.991249  0.982069  0.984024  0.983524  0.956550  0.986403  0.983898  0.985499  
Std 0.001810  0.008274  0.005300  0.006561  0.028249  0.008660  0.012738  0.005270  

D 
Avg 0.981388  0.972187  0.966936  0.962519  0.898818  0.972327  0.974753  0.967731  
Std 0.005959  0.010312  0.013174  0.019646  0.057648  0.010490  0.011044  0.012708  

E 
Avg 0.975081  0.967022  0.960715  0.953873  0.899154  0.964263  0.970244  0.958266  
Std 0.008220  0.011464  0.018419  0.020587  0.046937  0.016415  0.009428  0.015165  

F 
Avg 0.990199  0.985216  0.986721  0.984578  0.948623  0.988271  0.985916  0.988835  
Std 0.007841  0.013204  0.010498  0.010394  0.062396  0.006292  0.006329  0.005090  

G 
Avg 0.986714  0.974059  0.969468  0.977600  0.903570  0.977950  0.971064  0.979497  
Std 0.003553  0.016147  0.021883  0.014966  0.071533  0.013098  0.013521  0.007968  

H 
Avg 0.991051  0.982613  0.983153  0.982676  0.942753  0.986386  0.979534  0.985695  
Std 0.002420  0.007046  0.010230  0.006499  0.052275  0.006659  0.010079  0.004471  

I 
Avg 0.988131  0.984696  0.982851  0.978828  0.941427  0.981695  0.984475  0.981723  
Std 0.003611  0.005186  0.005549  0.009057  0.045026  0.008684  0.007250  0.009587  

18 

A 
Avg 0.996231  0.994507  0.992266  0.991636  0.980947  0.996121  0.990100  0.993886  

Std 0.001335  0.002560  0.005908  0.004838  0.019180  0.001389  0.014212  0.002138  

B 
Avg 0.988614  0.983052  0.981663  0.982098  0.962907  0.985848  0.987695  0.982954  

Std 0.002895  0.005810  0.005704  0.005249  0.027914  0.010441  0.004573  0.004377  

C 
Avg 0.993560  0.989050  0.989786  0.987640  0.967492  0.991998  0.991009  0.988971  

Std 0.002001  0.005483  0.003760  0.005031  0.029589  0.003638  0.004701  0.006521  

D 
Avg 0.984149  0.976127  0.977250  0.972356  0.945084  0.982055  0.983121  0.982657  

Std 0.007575  0.010417  0.014358  0.012537  0.036184  0.008476  0.009223  0.005507  

E 
Avg 0.983029  0.976179  0.969201  0.967585  0.921041  0.975016  0.979894  0.969859  

Std 0.005485  0.007749  0.022804  0.020780  0.077161  0.012933  0.006850  0.011365  

F 
Avg 0.994879  0.991597  0.991257  0.990250  0.967386  0.993366  0.989688  0.993501  

Std 0.001944  0.005648  0.006457  0.006642  0.056857  0.006316  0.010059  0.004134  

G 
Avg 0.989604  0.980014  0.985439  0.985635  0.951765  0.987855  0.980856  0.986851  

Std 0.006587  0.012202  0.009697  0.006399  0.034383  0.005662  0.011277  0.006626  

H 
Avg 0.993493  0.988385  0.989845  0.986327  0.970907  0.990525  0.986469  0.990555  

Std 0.002652  0.006167  0.004048  0.007339  0.020187  0.005834  0.010008  0.004249  

I 
Avg 0.990672  0.988853  0.984705  0.984615  0.952150  0.990416  0.990382  0.986555  

Std 0.003481  0.003635  0.008452  0.008712  0.042644  0.003859  0.004232  0.007095  

 

Table A. 11. SSIM result at 6, 12, 18 threshold level. 
threshold image metric SBO LSEOFOA IWOA IGWO ASCA ILSSA EHSSA BLPSO 

6 

A 
Avg 0.956034  0.953102  0.944412  0.948222  0.899428  0.955161  0.952431  0.949071  
Std 0.000857  0.003675  0.010808  0.007702  0.035771  0.001692  0.003185  0.005780  

B 
Avg 0.891663  0.879470  0.869946  0.875428  0.799208  0.871549  0.880424  0.864963  
Std 0.004981  0.011708  0.020920  0.014590  0.042788  0.036032  0.009749  0.022284  

C 
Avg 0.935557  0.932234  0.921876  0.925415  0.853310  0.934424  0.924478  0.908555  
Std 0.004160  0.006553  0.017297  0.020504  0.073717  0.007637  0.011022  0.018058  

D 
Avg 0.849435  0.838010  0.825871  0.835718  0.767707  0.846884  0.838927  0.826868  
Std 0.012248  0.013974  0.025987  0.022541  0.046262  0.015524  0.013997  0.010406  

E 
Avg 0.861831  0.849803  0.847677  0.848501  0.789193  0.857907  0.849428  0.822301  
Std 0.012077  0.015321  0.031723  0.022241  0.056228  0.020630  0.013194  0.027824  

F 
Avg 0.917929  0.902728  0.899912  0.904971  0.787190  0.893496  0.897081  0.900239  
Std 0.005871  0.016276  0.032775  0.015632  0.079889  0.042847  0.017067  0.018993  

G 
Avg 0.889010  0.873738  0.871401  0.867483  0.737372  0.862797  0.843740  0.865983  
Std 0.007581  0.016791  0.032540  0.027100  0.095080  0.042254  0.027832  0.023040  

H 
Avg 0.903795  0.893897  0.882501  0.891968  0.811303  0.900858  0.884444  0.888775  
Std 0.005880  0.011041  0.024499  0.014813  0.052766  0.014977  0.018684  0.015224  

I 
Avg 0.935296  0.922770  0.894436  0.915574  0.812117  0.923199  0.912619  0.914934  
Std 0.005986  0.011984  0.039476  0.020923  0.089704  0.024501  0.016780  0.015165  

12 

A 
Avg 0.981962  0.977683  0.972956  0.972395  0.940864  0.980542  0.980799  0.970836  
Std 0.003295  0.004865  0.009875  0.008584  0.027952  0.004249  0.004237  0.007767  

B 
Avg 0.942748  0.935171  0.927776  0.927617  0.871481  0.934494  0.938542  0.926451  
Std 0.010070  0.008304  0.015747  0.012679  0.029681  0.014985  0.008215  0.009679  

C 
Avg 0.973811  0.960877  0.954233  0.955278  0.912622  0.965834  0.966062  0.957092  
Std 0.003859  0.011147  0.015572  0.013482  0.042369  0.010996  0.010973  0.013680  

D 
Avg 0.925397  0.911414  0.903603  0.886280  0.828712  0.911245  0.923377  0.898635  
Std 0.013857  0.013212  0.019520  0.026620  0.063723  0.019146  0.010164  0.020900  

E 
Avg 0.918577  0.905744  0.897200  0.889928  0.820943  0.912005  0.913693  0.891961  
Std 0.014152  0.019865  0.024878  0.028489  0.053001  0.020834  0.017422  0.022318  

F 
Avg 0.959533  0.953662  0.950461  0.945835  0.868138  0.950458  0.955833  0.948037  
Std 0.017331  0.017646  0.030749  0.026195  0.090570  0.021814  0.011654  0.017744  

G 
Avg 0.953955  0.928463  0.918063  0.929592  0.805415  0.934728  0.929432  0.930401  
Std 0.006823  0.022420  0.035925  0.019873  0.089131  0.024174  0.017517  0.013369  

H 
Avg 0.958324  0.945956  0.943296  0.940369  0.869418  0.952372  0.951211  0.941356  
Std 0.006822  0.013215  0.018590  0.013724  0.071389  0.012362  0.009983  0.009881  

I Avg 0.963340  0.956506  0.946983  0.936893  0.883739  0.947621  0.959572  0.941356  



 

Std 0.008288  0.010683  0.015245  0.028350  0.050726  0.020357  0.008390  0.020513  

18 

A 
Avg 0.988440  0.985021  0.982159  0.979093  0.959007  0.987050  0.984603  0.980521  

Std 0.002255  0.003525  0.008483  0.006579  0.021161  0.004715  0.010904  0.004394  

B 
Avg 0.960692  0.948203  0.945717  0.945297  0.911016  0.953244  0.960194  0.946219  

Std 0.006290  0.011802  0.015373  0.011269  0.049934  0.019726  0.008811  0.011339  

C 
Avg 0.981460  0.971638  0.970520  0.968533  0.942429  0.977409  0.980127  0.967665  

Std 0.003782  0.015702  0.011379  0.012438  0.027503  0.012507  0.004698  0.018079  

D 
Avg 0.945655  0.928487  0.932107  0.921165  0.881505  0.942443  0.950609  0.934910  

Std 0.014030  0.015462  0.020661  0.023969  0.047662  0.014168  0.011427  0.012706  

E 
Avg 0.946491  0.930357  0.926393  0.919777  0.859226  0.936983  0.945249  0.920438  

Std 0.010955  0.016657  0.027080  0.030978  0.086882  0.020414  0.011312  0.022250  

F 
Avg 0.977075  0.964292  0.964241  0.962569  0.919619  0.972258  0.972900  0.969361  

Std 0.005207  0.015620  0.020063  0.014936  0.080741  0.019122  0.010506  0.011081  

G 
Avg 0.965349  0.943943  0.954510  0.951757  0.883616  0.960727  0.955694  0.954409  

Std 0.009929  0.017091  0.020191  0.015088  0.054977  0.014090  0.015233  0.013930  

H 
Avg 0.973539  0.960115  0.963643  0.955352  0.921443  0.967513  0.969341  0.957972  

Std 0.008705  0.012518  0.010563  0.017955  0.039703  0.011314  0.008297  0.011277  

I 
Avg 0.972581  0.964857  0.961186  0.957111  0.897497  0.968050  0.974954  0.959949  

Std 0.008008  0.011139  0.014238  0.025468  0.083633  0.014066  0.006141  0.013988  
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